
A Log-Structured Persistent Store

David Hulse Alan Dearle

Department of Computer Science Department of Computing Science
University of Adelaide University of Stirling
S.A., 5005, Australia Stirling, FK9 4LA, Scotland

dave@cs.adelaide.edu.au al@cs.stir.ac.uk

Abstract

Persistent stores have been implemented using a
variety of storage technologies including shadow
paging, log-based and log-structured approaches.
Here we compare these approaches and advocate the
use of log-structuring. The advantages of such a
technique include efficient support for large (64 bit)
address spaces, scalability and fast snapshot
processing. We describe the architecture of a new
log-structured persistent store and how it has been
used to support resilient persistent processes in the
context of the Grasshopper operating system. This
store is based on the use of a log server which
provides clients with private logical logs.

Keywords persistent stores, log-structured stores,
recoverable virtual memory.

1 Introduction

The concept of persistence may be defined as the
attribute of data which specifies its period of
existence. Stemming from this simple definition, a
wide range of systems supporting various forms of
persistence have emerged. In systems that support
orthogonal persistence [1], the application
programmer does not have to manage the
movement of data to and from backing store nor
translate between different data formats. Most of
these systems are supported at the lowest level by a
persistent store which provides a stable and
resilient data repository.

This paper describes a new persistent storage
architecture based on logging. This store is
designed to support paged persistent address spaces
in which processes directly execute – i.e. it supports
persistent virtual memory. It differs from other
persistent storage architectures in that it:

• is designed to support large (64 bit) address
spaces,

• is designed to support large or small data
sets (i.e. it is scalable), and

• is designed to support frequent fine-grained
snapshots.

The architecture has been implemented and is
being used to support persistent containers in the
Grasshopper operating system [6].

The next section describes various persistent
store technologies, highlights their strengths and
weaknesses and justifies our design decisions.
Section 3 describes a central part of the
architecture, known as the Log Server, which
provide clients with an abstract interface to logical
logs. Section 4 discusses how these logs are used
by clients to implement persistent stores. Section 5
describes how the store is used in the context of the
Grasshopper persistent operating system. Section 6
concludes.

2 Persistent Store Technologies

Researchers have experimented with many different
approaches to the implementation of persistent
stores. These include shadow paging techniques,
log-based approaches, and more recently,
log-structured approaches [12, 8, 14]. This section
introduces these techniques, highlights the
differences between them and justifies why we
have decided to design and implement a new
log-structured architecture.

The approaches listed above can all support a
persistent virtual address space capable of moving
atomically from one state to another – an action
known as checkpointing, snapshotting or stabilising
the store. Atomicity is important since the integrity
of the store must never be jeopardised in the event
of a system crash.

In the remainder of this paper we shall assume
that the persistent store subsumes the role of virtual
memory and that all processes run in a paged
persistent address space. This assumption is true in
the context in which this work was carried out and
somewhat simplifies arguments. However, if this
assumption is relaxed, we believe that the
arguments made in favour of log-structured
approaches remain valid.

2.1 Shadow Paging

A shadow paged virtual memory system is similar
in operation to a standard virtual memory system in
that both systems control the movement of pages to
and from physical memory. In contrast to
conventional virtual memory, a shadow paged
system ensures that a modified page never
overwrites its original version when being written
back to non-volatile storage. Provided that
appropriate housekeeping information is
maintained, this ensures that changes can be
undone or redone in the event of failure.

Checkpoint atomicity may be achieved through
the use of a mirroring technique such as Challis'
algorithm [3]. Using Challis' algorithm, the
persistent store is described by two timestamped
root blocks which reside at known disk locations.
The final action of a checkpoint is to overwrite the
oldest root block with a new root block that
describes the new state of the store. If this write is
successful, the checkpoint is complete and a new
state is established. The algorithm guards against
writing a partial root block by duplicating the
timestamp at the start and end of the root block. A
root block is considered valid only if the
timestamps at its start and end are identical. This
technique is illustrated in conjunction with after
look shadow paging in Figure 1. The next sections
describe two commonly used forms of shadow
paging known as after look and before look.

2.1.1 After Look Shadow Paging

In an after look shadow paging system [12, 13, 15],
a dirty page is never written to the site from which
the clean version of the page was fetched; this is
analogous to deferred-write logging [4, 9]. Instead,
modified pages are shadowed by writing them to
unused disk blocks. Since the locations of pages
change, it is necessary to maintain a Logical to
Physical Mapping (LP-Map) which maps virtual
addresses onto locations on non-volatile storage.

The LP-Map is a persistent data structure a copy
of which is typically kept in main memory for

efficiency reasons. However, larger stores require
proportionately larger LP-Maps which may not fit
entirely within memory. In this case the map could
be paged from a transient region of disk which
would require a separate mapping. This introduces
complexities which some systems, such as
CASPER [15], have solved by embedding the
LP-Map in the persistent address space that it
describes. This has the advantage that it will be
paged and shadowed as it is modified using a single
mapping.

Atomicity is achieved through the use of
Challis’ algorithm. If the embedded LP-Map
technique is employed, the root block contains the
disk address of the root of the LP-Map and the
entire persistent virtual memory is self describing.
Figure 1 shows a persistent store containing two
recoverable states referred to by the two root
blocks. The state of the store is initially described
by root block 1 and contains four pages of data.
During subsequent computation, page 3 is modified
resulting in page 5 being allocated as a shadow.
On snapshot, an updated LP-Map is written to page
6 and a new recoverable state is formed; this is
referred to by root block 2.

LP-map LP-map

root block1

root block2

Pages reachable from root blocks 1 and 2.

Pages reachable from root block 2.

Pages reachable from root block 1.

Figure 1: A persistent store containing two
recoverable states.

Since the LP-Map encodes the locations of the
data on non-volatile storage, it must be written
whenever a checkpoint is made. If checkpoints are
infrequent, the address space small, and the amount
of modified data large, this overhead is not onerous.
However, for large address spaces with frequent
checkpoints, this overhead becomes significant.
Using conventional page tables to represent the
LP-Map requires meta data overheads of between
6% (dense) and 400% (sparse) for 100 pages on a
64 bit architecture [10]. Consider the worst case of
a process that modifies a single page of data and
checkpoints on a 64 bit architecture. With an 8K
page size, if the LP-Map is represented as a
conventional page table containing an 8 byte disk

address, six pages of LP-Map must be written to
non-volatile storage to describe the changes made
to the single page. These observations have lead
others [8, 9] to conclude that the after look
approach is inappropriate for use in large
applications requiring high throughput.

A final disadvantage of the after look technique
is that physical clustering of pages is prevented
since modified data is written to unused disk
blocks; this degrades read performance. However, if
contiguous blocks can be found on disk, writes may
be batched considerably improving checkpoint
performance.

2.1.2 Before Look Shadow Paging

Systems based on the before look approach to
shadow paging [2, 8] operate similarly to after look
systems in that the shadow pages are always
written to unused blocks on disk. In contrast to after
look systems, the shadow pages are copies of the
original pages allowing modified pages to be
written to the disk locations from which they were
fetched. The locations of the copied original pages
must be written to disk before any modified pages
to ensure that incomplete updates can be safely
undone in the event of a failure. In effect, the set of
shadow pages form an undo log. After a successful
snapshot operation, this log is discarded and the
space occupied by the shadow pages is free for
reuse.

Since pages always reside at the same location
on disk, the mapping of virtual addresses to
physical disk locations is much simpler than with
after look shadow paging. In some systems this
mapping is completely static as demonstrated by
Brown's before look shadow paged store [2].

Before look has the advantage that it preserves
physical clustering of data on disk which can
improve read performance. However, since
modified data is always written to the location from
which it was read, writes are prone to high seek and
latency delays. The major disadvantage of the
before look technique is the additional I/O required
to write the shadow pages and their locations to
disk before any modified pages can be written.

2.2 Log-based Stores

An alternative approach to shadow paging is to
make use of the properties of logging to overcome
some of the difficulties encountered with either
form of shadow paging. The primary advantage of
logging is that writes are appended to the end of a
log in a sequential stream. This eliminates the I/O

bottleneck associated with the random writes of
shadow paged systems since continuous disk access
in the same or neighbouring cylinders can be faster
by an order of magnitude [14].

We define a log-based store as one in which a
log is used in conjunction with another approach
such as shadow paging. We use the term
log-structured approach to refer to a store which
uses only logs for persistent storage. An effective
use of a log-based approach can be seen in the
design of the DB Cache [8]. This database system
was designed to provide efficient throughput of
transactions whilst maintaining high availability
which required fast failure recovery. The DB Cache
is comprised of three integral parts: a volatile
cache, the physical database and a non-volatile
safe approximately the same size as the cache.

The cache is used to hold all of the currently
active pages. The physical database resides on disk
and contains a single version of each page. Pages
in the database are updated in place which permits
the mapping from virtual addresses to disk locations
to be static. A page in the database is either the
current version or it is obsolete in which case the
current version is held in the cache. Together, the
cache and the physical database represent the
actual state of the database.

During the running of the system, pages are
operated on in the cache. Pages are read in from
the physical database when they are first required.
When a page is modified, a copy is made within
the cache and modification is allowed to proceed
on the copy. Snapshots are processed by logging the
modified pages to the safe and marking the cached
versions as originals but changed with respect to
the physical database. When pages are evicted
from the cache, they are written to their fixed
location within the physical database if they are
changed, otherwise they are simply discarded.

The purpose of the safe is to protect the cache
against loss through system failure. It contains
copies of the pages needed to reconstruct the cache
following a failure. In particular, it contains those
pages which have not yet been written back to the
physical database. The other pages in the cache are
either unmodified or are modified but awaiting
snapshot and are of no importance following a
failure. It is possible to reconstruct the state of the
database after a crash by reading the contents of
the safe into the cache and marking each page as
changed with respect to the physical database.

The positive aspects of the approach taken by
the DB Cache are that the use of a log makes both

snapshot and recovery efficient. In contrast to the
LP-Map required by after look shadow paging, very
little meta information needs to be maintained.
However, the main problem with this technique is
the limitation that pages being modified by a
transaction cannot be swapped out. They must
remain in the cache until the transaction either
commits or aborts. This causes problems in a
system where transactions often run for long periods
of time since the cache may become full of
modified pages that cannot be swapped out. This
problem can be solved by logging copies of the
original pages and then writing the modified
versions directly into the physical database.
Naturally, this introduces some of the problems
associated with before look shadow paging.

A final problem with the DB Cache approach is
that pages in the safe require associated meta
information to describe where they are located
within the physical database as well as some other
flags needed for correct operation of the safe. In the
system described in [8], this information is
contained in the header of each page. This
approach is unsuitable for use in a page based
persistent store.

2.3 Log-structured Stores

In a log-structured store all data is stored in a log
comprising a conceptually infinite sequence of
records. Records in the log are never overwritten –
i.e. logs exhibit append-only semantics. As we shall
see, this append-only behaviour can be exploited to
efficiently support persistent stores.

The mapping of a persistent address space onto
a log may be achieved by writing modified pages
and meta data describing the virtual address of
those pages into the log. The log therefore contains
a serial history of the changes made to the store.
The basic mechanism of the log may be trivially
extended to support the ability to move atomically
from one state to another. This is achieved by
writing a special snapshot meta record into the log
signifying that a new consistent state has been
established. On restart, a consistent state may be
found by reading only those records written before
the last snapshot meta record. Since records
occurring after the last snapshot meta record are not
part of a consistent state, care must be taken to
distinguish them from newly written records
following a restart. This may be handled by either
writing a restart meta record to the log or via log
truncation. During execution, the location of pages
in the log may be cached in a data structure similar

to an LP-Map. This data structure need only be
transient since it can be reconstructed by reading
the consistent meta data from the log.

The physical volumes on which logs are written
are bounded in size; therefore some mechanism
must be provided to make space for new records to
be written to the log. In practice two alternative
techniques, compaction and threading, may be used
to manage free space.

In a store that employs compaction, records are
compacted towards the start of the log thus
eliminating fragmentation and making space
available at the tail of the log. The cost of
compaction is that data is repeatedly moved
towards the head of the log. The amount of copying
performed by the system may be considerably
reduced by judicious use of threading.

In a threaded store, the log is threaded through
the free space on disk. However, to prevent severe
fragmentation, the disk may be partitioned into
fixed size segments. Only segments may be written
to the log and when a new segment is appended, it
is written in its entirety. The size of the segments is
chosen such that the seek and latency time needed
to start writing the segment is negligible compared
to the time taken to actually write the set of
contiguous disk blocks. When space needs to be
recovered, one or more segments are read into
memory and the live records are copied into new
segments which are appended to the log. The old
segments are then free for reuse.

2.3.1 The Advantages of Log Structuring

The removal of the requirement to maintain a
persistent LP-Map coupled with a small, fixed
meta-data overhead is a major advantage of the
log-structured approach. This manifests itself as
increased snapshot performance resulting from two
factors:

• less meta data needs to be written, and

• writes are to contiguous disk regions which
dramatically increases throughput.

A further benefit of the log-structured approach
is that data may be dynamically re-clustered to
improve physical locality by copying data to the
end of the log. This gives equivalent read
performance to the before look shadow paging
technique and no worse performance than after
look.

The implementation of a log-structured system
may be usefully partitioned into general logging
facilities and use of these facilities by clients. In
the system described in this paper, a log server is

provided that manages a physical log and presents
each client with its own logical log; the log server
is described in the next section. The way in which
clients use the log server to implement a persistent
storage facility is described in Section 4.

3 The Log Server

The primary purpose of the log server is to provide
an abstract interface to a logging subsystem. The
log server divides its available storage into fixed
size segments. The end of each segment contains a
trailer record used exclusively by the log server to
maintain a single physical log. The remainder of
the segment is unused and is free to be filled in
according to the needs of individual clients.

3.1 Physical Log Structure

Figure 2 shows the structure of a segment and its
trailer record. The most important field in the trailer
is the Next Segment field which holds the segment
ID of the next segment in the physical log. A
segment ID encodes a segment’s disk address and
is meaningful only to the log server. Since a pointer
is used to identify the next segment, the log is not
required to be physically contiguous. Such logs are
termed threaded and may be likened to a singly
linked list. In this case, the physical log is forward
chained which simplifies scanning.

Next Segment

Client

Timestamp

Segment Trailer

Unused by log server

Figure 2: Segment trailer record used by the log
server.

The system described in this paper provides
multiple logical logs constructed above a single
physical log. A logical log is a resource allocated
to a single client and comprises the set of segments
used by that client. A physical log is the concrete
storage containing segments potentially from many
clients.

The Client field is used to partition the physical
log providing each client with a private logical log.
Each logical log comprises segments with identical
Client fields. Clients may read only those
segments that they own. To support this, each client
must register with the log server prior to using any
of its services. At this time, the log server issues it
with a unique identifier which must be presented

when performing operations. When writing a
segment, the log server fills in the Client field with
the identifier supplied by the client. Our
implementation of the log server within
Grasshopper uses the capability system [5] to make
this mechanism secure.

The Timestamp field is filled in by the log server
before the segment is written. It is used to impose a
chronological order on the segments in the physical
log which is useful for finding the last segment on
restart. Assuming that the log server zeroes all
segment trailers before first use, the end of the log
can be found by scanning the sequence of segments
until the timestamp ceases to increase.

3.2 Log Server Interface

The log server provides registered clients with
seven operations. When a client wishes to append a
segment to its logical log, it calls the
write_segment operation which has the following
signature:

write_segment(ClientID id, Buf buffer)

returns SegID

The client supplies its registration identifier and
the segment it wishes to have appended to its log.
The log server fills in the Client field of the
segment’s trailer record and writes the current time
into the Timestamp field. The Next Segment field is
initialised with the identity of an eagerly allocated
unused segment. Finally, the log server enqueues
the segment for writing to non-volatile storage and
returns its identifier.

When the write_segment operation returns, no
guarantees regarding the stability of the data are
made. The segment may have been cached by a
device controller or queued for writing by the log
server. A client may force segments to non-volatile
storage using the flush_segment operation, which
causes all segments up to and including segid to be
written.

flush_segment(ClientID id, SegID segid)

Segments can be retrieved from a client’s
logical log using the read_segment operation which
has the following signature:

read_segment(ClientID id, SegID segid,

Buf *buffer)

The client must provide the log server with its
registration identifier and the identity of the
segment it wishes to read. The log server checks
that the client owns the specified segment; if it

does, the segment is copied into the buffer supplied
by the client, otherwise an error is indicated.

When a client of the log server restarts
following a failure, it may be necessary to scan the
logical log to recover as much state as possible. In
support of this, the log server provides two
operations which enable a client to read the first
and following segments in its logical log. The
signatures of these operations are shown below.

read_first(ClientID id, Buf *buffer)

returns SegID

read_next(ClientID id, SegID segid,

Buf *buffer) returns SegID

The read_first operation requires the client to
supply its registration identifier and a buffer into
which the log server will copy the first segment of
the client’s logical log. The log server returns the
identity of the copied segment which can be used
to perform a read_next operation. Given the identity
of an arbitrary segment in a logical log, the
read_next operation may be used to retrieve the
next segment in that logical log.

When a segment has been cleaned by a client
and no longer contains valid data, it may be
returned to the log server for reuse using the
free_segment operation:

free_segment(ClientID id, SegID segid)

The final operation provided by the log server is
read_block which, like the Unix read system call,
permits an arbitrary region of a segment to be read:

read_block(ClientID id, SegID segid,

Offset offset, Length len,

Buf *buffer)

In the next section we will show how these
facilities may be used to provide a paged persistent
address space.

4 Storage Managers

This section describes the architecture and
operation of our log-structured persistent store. We
assume that each client of the Log Server
implements a manager which supports a distinct
persistent store. First we describe how segments are
used to store persistent data. Next we describe the
infrastructure maintained by managers to track
persistent data stored in the log. Finally we show
how these mechanisms are used to support the
operations required by a page based persistent store.

4.1 Logical Log Structure

Each persistent store is completely described by the
contents of a logical log. The logical log comprises
a sequence of fixed size segments as described in
Section 3.1. Each client imposes structure on these
segments so that the data within them may be
interpreted; this structure is described below.

4.1.1 Segment Layout

Since each manager supports a paged persistent
virtual address space, the primary storage
requirement is page sized records. Therefore
managers structure segments as a collection of data
pages and meta records describing those pages.
Meta records describe why a page was placed in
the log and include other information such as the
page’s virtual address. Meta records are allocated
sequentially from the end of the segment while the
pages they describe are allocated from the
beginning as shown in Figure 3.

Next Segment

Client

Timestamp

Segment Trailer

#
m

e
ta

m
e

ta
1

..
..

..
..

.

m
e

ta
N

page1 pageN

Figure 3: Internal Structure of a segment

As shown in Figure 4, meta records are of
variable size and are self describing via a fixed
size trailer containing type and size fields. Store
managers use seven different types of meta record
which are described below.

meta-record trailer

VA SizeType

variable sized type
dependent data

Seg
Offset

Figure 4: A Swapped Page meta record

• Snapshot Pag e : A snapshot page meta record
describes a page that has been stored in the
log as the result of a snapshot operation. It
contains fields to record the virtual address
of the page, its location within the segment
and a snapshot identifier.

• Swapped Pag e : Swapped pages are those
which have been evicted from main memory
during the normal running of the system.
They are not part of any snapshot and must
be described by different meta records to
distinguish them from other pages. The
structure of a Swapped Page meta record is
shown in Figure 4.

• Snapshot Swapped Pag e : When a page is
swapped out and subsequently snapshotted,
these meta records are used to optimise the
snapshot by referring to the swapped page.
Consequently, they describe the location of a
page in a previously written segment.

• Snapshot Complete : At the completion of a
snapshot operation this meta record,
containing a snapshot identifier, is written to
signify that the snapshot is complete. This is
necessary so that complete snapshots can be
distinguished from incomplete ones at
recovery time.

• B - Tree Pag e : These meta records describe
pages used to store the B-Tree nodes which
are discussed in Section 4.2. They contain
the virtual address of the page, an identifier
for the segment in which the page is
contained and the page’s location within the
segment.

• B - Tree Start : Prior to writing the first B-Tree
page, a B-Tree start meta record is written to
the log. This guards against potential B-Tree
corruption if a failure occurs when the
B-Tree is being written to the log.

• B - Tree Complet e : When the last page of a
B-Tree has been written to the log, this meta
record is written to signify that the B-Tree is
complete. Without this record, the B-Tree is
invalid and an earlier version must be used.

4.2 Store Manager Data Structures

As in after look shadow paging systems, a manager
which utilises a log must maintain data structures
to enable the current versions of pages in the store
to be found. Our store uses two separate data
structures, the Active Page Table (APT) and the
Recoverable State B-Tree (B-Tree) to describe the
current location of pages in the store. Both the
B-Tree and the APT reside in the virtual address
space of the store manager.

The B-Tree is used to describe the current
recoverable state of the store. Each node in the
B-Tree describes the location of a contiguous range
of pages within the logical log. This has two
advantages: firstly it permits large regions of the
persistent address space to be described concisely.
Secondly, it efficiently describes a sparsely
populated address space, which is crucial for 64 bit
architectures.

The APT is used to store the current state and
location of each active page and is purely transient.
A page is said to be active if it is resident or the

B-Tree does not contain an up-to-date entry for that
page. Pages referenced by the APT can be either
resident or stable. Resident pages are those
currently stored in a physical page frame; stable
pages are those which have been written to non-
volatile storage. This might have occurred because
the page was swapped out, or because the page was
part of a snapshot. In the latter case, it is possible
for a page to be both resident and stable. The
location of valid pages that are not found in the
APT may be found in the B-Tree; if a page is not
found in either, it is invalid.

Unlike the APT, the B-Tree is a persistent data
structure; however, since the meta records for the
pages in the log contain virtual addresses, it is
possible to rebuild the B-Tree from the contents of
the logical log. Therefore the only advantage of
writing the B-Tree to non-volatile storage is to
increase the efficiency of restart. Consequently, the
B-Tree may be snapshotted much less frequency
than the data it describes.

4.3 Store Operations

This section describes how the logical log and meta
data structures are used to implement a persistent
store. For the purpose of this discussion, it is
assumed that there may be one or more concurrent
processes executing within the persistent virtual
memory. Each will fault and snapshot
independently of the others. The handling of these
and other necessary operations is now discussed.

4.3.1 Fault Handling

When a fault occurs on a non-resident page, it is
necessary to determine the current location of the
page. This is achieved by consulting the APT and
B-Tree, one of which stores its location in terms of
a segment identifier and an offset within the
segment. This information is used to perform a
read_segment operation. Once the segment
containing the page is loaded, the required page is
made available and the APT is updated to reflect
the fact that the page is now resident.

If the required page is already resident, the APT
contains the identity of the physical page frame
currently holding the page. This information is used
to make the page accessible to the process. Once
the page has been entered in the address space of
the process it is possible to resume execution.

4.3.2 Snapshot

When a process executing within the persistent
store performs a snapshot operation, the modified

pages it has accessed must be made stable. In our
implementation of this store within Grasshopper, a
list of these pages is maintained by a causal
tracking subsystem [7, 11] and is supplied to the
manager whenever a snapshot is made. In many
systems, store managers use page protections to
track these pages.

The modified pages are marshalled into
segments, each described by a Snapshot Page meta
record. As each segment becomes full, a
write_segment operation is performed which returns
the identity of the new segment. This is used in
conjunction with the segment offset of each page to
update the APT reflecting that the pages are now
stable.

The final operation performed during a snapshot
is to write a Snapshot Complete meta record into
the log. The segments containing snapshotted pages
may be written to the log server lazily and the log
need not be eagerly flushed. Writing segments
lazily may be used to decrease snapshot latency
and increase throughput. Conversely, segments may
be written eagerly using the flush_segment
operation if required. These choices are a matter of
policy.

4.3.3 B-Tree Snapshot

As described in Section 4.2, B-Trees may be
written to the log periodically in a lazy fashion.
Before writing a B-Tree to non-volatile storage,
those APT entries referring to pages that have
become stable are used to update the corresponding
entries in the B-Tree. Once this process is
complete, updated pages containing B-Tree nodes
may be written to the log and described by B-Tree
Page meta records. These meta-records contain
enough information for the virtual address space
containing the B-Tree to be recreated following a
restart. B-Tree Start and B-Tree Complete meta-
records are used to delimit the set of B-Tree Page
meta records. This ensures that an incomplete
B-Tree snapshot can be detected should a failure
occur whilst the B-Tree is being written to the log.

4.3.4 Recovery

When the persistent system is restarted after a
crash or after an orderly shutdown, the store
manager must determine the state of the store from
the contents of the log. Therefore the most recent
B-Tree in the log must first be recovered; this
necessitates scanning the logical log from some
suitable starting point. Once the most recent
B-Tree has been located, the page tables necessary

to enable it to be loaded into the virtual address
space of the store manager are initialised; this is
possible since the B-Tree Page meta records
contain virtual addresses.

Since B-Trees are written lazily, several
snapshots might have occurred since the last time
the B-Tree was stored in the log. Therefore the most
recently stored B-Tree will probably not describe
the most recently checkpointed state of the store.
However, a description of the most recent state can
be reconstructed by examining the meta records for
all of the successful snapshots written after the last
B-Tree. The Snapshot Page meta records from these
snapshots can be loaded into either the B-Tree or
the APT. In the system implemented, it is the APT
that is brought up to date but this is largely a matter
of taste. Once this is complete, the state of the
store is recovered and processes may resume
execution. Taken to an extreme, this technique can
be used without ever writing the B-Tree to the log,
as is the situation when the store is first created.

If the system has been running for some time, it
is likely that the log will contain numerous versions
of the B-Tree. Furthermore, since the most recent
version of the B-Tree effectively summarises the
snapshots earlier in the log, only the segments
written after the most recent B-Tree need be
scanned on restart. Therefore, the efficiency of
recovery can be improved if the most recent B-Tree
can be found quickly. This may be achieved by
adopting the root block approach used in shadow
paged systems to locate the B-Tree in the log. The
root block stores the log address of the first meta
record describing last B-Tree written to the log.

The efficiency of restart depends on the
frequency with which the root block is written.
However, since writing a root block adversely
affects performance, the frequency with which this
occurs is a matter of policy permitting a further
trade off between restart and normal running costs.

4.3.5 Page Eviction

When physical memory runs low, it may be
necessary to swap out pages holding data from the
persistent store. When a page is swapped out, its
entry in the APT must be updated to record the fact
that it is no longer resident.

Swapped pages do not form part of a snapshot
and must be ignored during recovery. Consequently
they are distinguished from other pages in the log
by having Swapped Page meta records associated
with them. However, swapped pages may later
become part of a snapshot; if this occurs, a

Snapshot Swapped Page meta record containing the
location of the swapped page is written to the log.

4.3.6 Cleaning

Snapshotting causes new and modified data to be
appended to the log and potentially makes some
data already in the log redundant. Therefore, logs
must be cleaned to recover space used by obsolete
data. The log server cannot assist with this process
since only store managers can interpret the data
stored in segments. Therefore, store managers have
the responsibility of cleaning the logical logs that
they manage.

Another reason for cleaning is to re-cluster data
in the store. This is advantageous for two reasons:
firstly, if related data is grouped in segments, it
makes reading more efficient. Secondly, if
contiguous virtual pages are grouped into segments,
it has the effect of compacting the B-Tree since a
single node can describe an entire page range.

The process of cleaning, aims to compact live
data into as few segments as possible whilst
retaining appropriate clustering. In consultation with
the APT and B-Tree, the store manager can
examine arbitrary segments in the log and identify
the live data. The store manager cleans by copying
all live data from segments containing obsolete
data into new segments. Once the new segments
are secured on non-volatile storage, the cleaned
segments may be returned to the log server using
the free_segment operation. In our system
individual managers may implement different
cleaning policies.

Segment cleaning may be initiated in one of
two ways: either by the manager reaching internal
thresholds or by the manager being instructed to
clean by some external agent. The manager may be
instructed to commence cleaning if the log server is
running low on clean segments, if the system is
quiescent, by a timer or by a human manager.

The number of segments cleaned at a time
depends on the manner in which cleaning has been
triggered. For example, cleaning triggered by
reaching a threshold is stopped when a second
threshold is reached. The amount of cleaning
performed when externally triggered is a parameter
of the cleaning request.

5 Use of the Store in Grasshopper

The architecture of the persistent store described
within this paper was designed for use in the

Grasshopper persistent operating system. In
Grasshopper all processes (termed loci) execute in
the context of persistent data repositories known as
containers. Loci are free to migrate between
containers by invoking them. Thus a locus may
mutate data in multiple containers. Each container
has an associated manager which implements the
functionality of the store managers described in
Section 4.

Since loci can concurrently execute within
containers, it is possible for them to share modified
data; this introduces the possibility of a locus
becoming causally dependent on others.
Consequently, some mechanism must be provided
to ensure that individual locus snapshots form a
globally consistent state.

We have experimented with several different
persistence regimes in Grasshopper. In our
experimental system, we are currently exploring a
locus based snapshot model. We are also
experimenting with both eager and lazy approaches
to global consistency: In the eager system the
transitive closure of causally dependent loci are
snapshotted together. In the lazy system, when a
locus is snapshotted, its state and the state of any
modified pages it has accessed must be written to
the log. This process is mediated by the kernel
which stores the kernel level data in its own log
and instructs managers to snapshot the appropriate
user level data from the containers they manage.

Globally consistent states are found by the
kernel which informs managers of the existence of
such states. Managers never perform B-Tree
snapshots unless they are aware of a globally
consistent state.

On restart, the kernel finds the latest consistent
state from its own logical log and instructs the
managers to restore the appropriate user level state.
Finally, the loci found in the checkpointed kernel
data may be restored to their last consistent state.
In this manner the Grasshopper system supports
resilient persistent processes.

6 Conclusions

We have examined the architecture of existing
persistent stores and identified problems relating to
scalability and efficiency. This has motivated the
design of a new log-structured approach which is

both efficient and scalable. The approach is based
on the use of a log server which provides clients
with private, threaded logical logs.

The major advantage of our approach is the
avoidance of large, persistent data structures to
describe the state of the store. Our technique
maintains minimal persistent meta data and uses
transient data structures to describe the state of the
store. This permits efficient snapshot processing and
hence high throughput.

We have implemented the store described in
this paper and it is used in the Grasshopper
operating system to manage both user level and
kernel level persistent data. In conjunction with our
optimistic process checkpointing scheme [7], the
store supports resilient persistent processes.
Preliminary performance measurements confirm the
efficacy of this approach.

7 References

[1] Atkinson, M. P., Bailey, P. J., Chisholm, K.
J., Cockshott, W. P. and Morrison, R. “An
Approach to Persistent Programming”, The
Computer Journal, Volume 26, Number 4,
pages 360-365, 1983.

[2] Brown, A. L. “Persistent Object Stores”,
Ph.D thesis, Computational Science,
University of St. Andrews, 1988.

[3] Challis, M. F. “Database Consistency and
Integrity in a Multi-User Environment”,
Databases: Improving Useability and
Responsiveness, Academic Press, pages 245-
270, 1978.

[4] Davies, C. T. “Recovery Semantics for a
DB/DC System”, ACM Annual Conference,
pages 136-141, 1973.

[5] Dearle, A., di Bona, R., Farrow, J.,
Henskens, F., Hulse, D., Lindström, A.,
Norris, S., Rosenberg, J. and Vaughan, F.
“Protection in the Grasshopper Operating
System”, Proceedings of the 6th International
Workshop on Persistent Object Systems,
Tarascon, France, Springer-Verlag, pages 60-
78, 1994.

[6] Dearle, A., di Bona, R., Farrow, J.,
Henskens, F., Lindström, A., Rosenberg, J.
and Vaughan, F. “Grasshopper: An
Orthogonally Persistent Operating System”,
Computer Systems, pages 289-312, Summer,
1994.

[7] Dearle, A. and Hulse, D. “On Page-based
Optimistic Process Checkpointing”,
IWOOOS '95, Lund, Sweden, to appear, 1995.

[8] Elhardt, K. and Bayer, R. “A Database
Cache for High Performance and Fast
Restart in Database Systems”, Transactions
on Database Systems, Volume 9, Number 4,
pages 503-525, 1984.

[9] Gray, J., McJones, P., Blasgen, M., Lindsay,
B., Lorie, R., Price, T., Putzolu, F. and
Traiger, I. “The Recovery Manager of the
System R Database Manager”, Computing
Surveys, Volume 13, Number 2, pages 223-
242, June 1981.

[10] Liedtke, J. “Address Space Sparsity and Fine
Granularity,”, ACM Operating Systems
Review, Volume 29, Number 1, pages 87-90,
1995.

[11] Lindström, A. “Multiversioning and Logging
in the Grasshopper Kernel Persistent Store”,
IWOOOS '95, Lund, Sweden, to appear, 1995.

[12] Lorie, R. A. “Physical Integrity in a Large
Segmented Database”, ACM Transactions on
Database Systems, Volume 2, Number 1,
pages 91-104, 1977.

[13] Munro, D. S. “On the Integration of
Concurrency, Distribution and Persistence”,
Ph.D. thesis, Computational Science,
University of St Andrews, 1993.

[14] Rosenblum, M. and Ousterhout, J. K. “The
Design and Implementation of a Log-
Structured File System”, 13th ACM
Symposium on Operating Systems Principles,
Pacific-Grove, California, ACM Operating
Systems Review, Volume 25, Number 1,
pages 1-15, 1991.

[15] Vaughan, F., Schunke, T., Koch, B., Dearle,
A., Marlin, C. and Barter, C. “Casper: A
Cached Architecture Supporting
Persistence”, Computing Systems, Volume 5,
Number 3, California, pages 337-364, 1992.

