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Abstract. Hybrid metaheuristics have received considerable interest in recent
years. Since several years ago, a wide variety of hybrid approaches have been
proposed in the literature including the new GA-EDA approach. We have design
and implemented an extension to this GA-EDA approach, based on statistical
significance tests. This approach had allowed us to make an study of the bal-
ance of diversification (exploration) and intensification (exploitation) in Genetic
Algorithms and Estimation of Distribution Algorithms.
Keywords. Estimation of distributions algorithms, genetic algorithms, evolution-
ary computation, hybrid algorithms, intensification and diversification.

1 Introduction

Over the last years, interest in hybrid metaheuristics has risen considerably among re-
searchers. The best results found for many practical or academic optimization problems
are obtained by hybrid algorithms. Combination of algorithms such as descent local
search [15], simulated annealing [10], tabu search [6] and evolutionary algorithms have
provided very powerful search algorithms.

Two competing goals govern the design of a metaheuristic [19]: exploration and
exploitation. Exploration is needed to ensure every part of the search space is searched
thoroughly in order to provide a reliable estimate of the global optimum. Exploitation
is important since the refinement of the current solution will often produce a better
solution. Population-based heuristics (where genetic algorithms [9] and estimation of
distribution algorithms [12] are found) are powerful in the exploration of the search
space, and weak in the exploitation of the solutions found.

With the development of our new approach, GA-EDA, a hybrid algorithm based on
genetic algorithms (GAs) and estimation of distribution algorithms (EDAs), we aim to
improve the explorations power of both techniques.

This hybrid algorithm has been tested on combinatorial optimization problems (with
discrete variables) as well as real-valued variable problems. Results of several experi-
ments show that the combination of these algorithms is extremely promising and com-
petitive.

This paper is organized in the following way: First, we will focus on different tax-
onomies of hybrid algorithms found in the literature; in section 3, the GA-EDA ap-
proach is reviewed with a complete performance study presented in section 4. Finally
we close with our conclusions and further future work.



2 Taxonomy of Hybrid Algorithms

General taxonomies provides a mechanism to allow comparison of hybrid algorithms in
a qualitative way and classifying new hybrid approaches. This section highlights some
of the most important hybrid taxonomies.

[2] describes three different forms of hybridization:

– Component Exchange Among Metaheuristics.
One of the most popular hybridization methods is the use of trajectory methods
such as Local Search, Tabu Search, in population-based algorithms. These solu-
tions combine the advantages of population based methods, which are better on
diversification, and trajectory methods, which are better on intensification. For ex-
ample [7] incorporates local search in a genetic framework.

– Cooperative Search [1, 4, 21].
The second hybridization approach consists of a search performed with various al-
gorithms that, typically, execute in parallel and exchange information about states,
solutions, sub-problems or other characteristics.

– Integrating Metaheuristics and Systematic Methods .
This approach has produced very effective algorithms. For instance [5] integrates
metaheuristics and Constraint Programming.

A complementary taxonomy can be found in [19] which defines a hierarchical clas-
sification.

– LRH (Low-level Relay Hybrid).
A given metaheuristic is embedded into a single-solution metaheuristic. For in-
stance in [14] a LRH hybrid combines simulated annealing with local search.

– LCH (Low-level Co-evolutionary Hybrid).
Algorithms consist in population based heuristics coupled with local search heuris-
tics. The population based algorithms will try to optimize globally and the local
search will try to optimize locally.

– HRH (High-level Relay Hybrid).
The metaheuristics are executed in a sequence, one after another, each using the
output of the previous as its input. In [13] annealing is used to improve the popula-
tion obtained by a GA.

– HCH (High-level Co-evolutionary Hybrid).
Several algorithm perform a search in parallel and cooperate in order to find the
optimum. This approach is similar to the previous cooperative search. The use of
parallel EDAs in a island model [18] is an of this.

The hybrid algorithm GA-EDA, can be classified as cooperative search in Blum and
Roli’s taxonomy. In Talbi’s classification GA-EDA is heterogeneous; global because the
algorithm search the whole state space, and general because both algorithms solve the
same problem.



3 Hybrid GA-EDA Algorithm

Hybrid GA-EDA are new algorithms based on both techniques [16, 17]. The original
objective is to get benefits from both approaches. The main difference from these two
evolutionary strategies is how new individuals are generated. These new individuals
generated on each generation are called offspring. Our new approach generates two
groups of offspring individuals, one generated by the GA mechanism and the other by
EDA one. On one hand, GAs use crossover and mutation operators as a mechanism to
create new individuals from the best individuals of the previous generation. On the other
hand, EDAs builds a probabilistic model with the best individuals and then sample the
model to generate new ones.

Populationp+1 is composed by the best overall individuals from (i) the past popula-
tion (Populationp), (ii) the GA-evolved offspring, and (iii) EDA-evolved offspring.

The individuals are selected based on their fitness function. This evolutionary schema
is quite similar to Steady State GA in which individuals from one population, with bet-
ter fitness than new individual from the offspring, survive in the next one. In this case
we have two offspring pools. Figure 1 shows how this model works.
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Fig. 1. Hybrid Evolutionary Algorithm Schema



3.1 Participation Functions

On this approach an additional parameter appears, this parameter has been called Par-
ticipation Function(PF). PF provides a ratio of how many individuals are generated by
each mechanism. In other words, the size of GA and EDA offspring sets. The size of
these sets also represents how each of these mechanisms participates on the evolution
of the population. These ratios are only a proportion for the number of new individu-
als each method generates, it is not a proportion of individuals in the next population,
which is defined by the quality of each particular individual. If a method were better that
the other in terms of how it combines the individuals there would be more individuals
from this offspring set than the other.

Several alternatives to these Participation Functions were taken into account in pre-
vious experiments, being some of them: the Constant Ratio (x% EDA / y% GA),the
Alternative Ratio (ALT), the Incremental Ratio (EDA++ and GA++) or the Dynamic
Ratio (DYNAMIC). More information about them could be found in [16, 17] From all of
these alternatives, maybe could be useful to highlight the last one (DYNAMIC), which
has a mechanism that increases the participation ratio for the method that happens to
generate best individuals. This function evaluates each generation considering the pos-
sibility to change the participation criterion as defined by the ratio array.

The DYNAMIC algorithm starts with 50%/50% ratio distribution between the two
methods. On each generation the best offspring individuals from each method are com-
pared and the wining method gets a 5% of the ratio of the opposite method (scaled
by the amount of relative difference between the methods, dif variable). This mecha-
nism provides a contest-based dynamic function in which methods are competing to get
higher ratios as they generate better individuals.

4 The new Range Based Participation Function

In this section we present a new participation function that is based on the first steps of
the Mann-Whitney non-parametric test. In this test there is no hypothesis that the initial
samples should follow a normal distribution, which is important in this environment.

The new Range Based Participation Function begins by assembling the fitness from
GA and EDA populations into a single set of size N = nGA + nEDA. These mea-
sures are then rank-ordered from lowest (rank1) to highest (rankN ), with tied ranks
included where appropriate.

Once they have been sorted out in this fashion, the rankings are then returned to the
population, GA or EDA, to which they belong and substituted for the fitness measures
that gave rise to them.

The effect of replacing raw measures with ranks is two-fold. The first is that it brings
us to focus only on the ordinal relationships among the raw measures (“greater than”,
“less than” and “equal to”) with no illusion or pretense that these raw measures derive
from an equal-interval scale. The second is that it transforms the data array into a kind
of closed system, many of whose properties can then be known by dint of sheer logic.

Let be,
TGA = the sum of the nGA ranks in group GA



TEDA = the sum of the nEDA ranks in group EDA

Now, we would like to know if GA and EDA do not differ with respect to their
effectiveness. If this were true, then the raw measures within fitness in GA and EDA
would be about the same, on balance, and the rankings that derive from them would be
evenly mixed within fitness in GA and EDA, like cards in a well shuffled deck.

So if this were true, we would expect the separate averages of the GA ranks and
the EDA ranks each to approximate the same overall mean value. This entails that the
rank-sums of the two groups, TGA and TEDA, would approximate the values,
MeanGA = nGA(N + 1)/2
MeanEDA = nEDA(N + 1)/2

Thus we know that:

– The observed value of TGA belongs to a sampling distribution whose mean is equal
to MeanGA.

– The observed value of TEDA belongs to a sampling distribution whose mean is
equal to MeanEDA.

Finishing, the effectiveness of GA and EDA will be,
EffectGA = TGA/MeanGA

EffectEDA = TGA/MeanEDA

Thus, the percentages for the next generation will be,
PercGA = EffectGA/EffectGA + EffectEDA

PercEDA = EffectEDA/EffectGA + EffectEDA

5 Behavior Analysis of DYNAMIC vs. RANGE Participation
Functions

The experiments to compare the behavior of DYNAMIC and RANGE Participation
Functions have been performed considering five continuous problems:

Branin RCOS function
Griewank function
Rastrigin function
Schwefel’s problem [8, 20]
A continuous version of the MaxBit problem

The hybrid algorithm is composed of the simplest versions of both GA and EDA
components. In this sense a real string (real-coded vector) has been used to code all
the problems. GA uses Roulette Wheel selector, one-point crossover, flip mutation (in
this case selecting a random gene, with probability 0.01 and generating a new value
using an uniform random distribution) and uniform initializer. EDA uses the continuous
version of the Univariate Marginal Distribution Algorithm (UMDA c) [11]. The overall



algorithms generate an offspring twice the size of the population. Depending on the
ratios provided by the Participation Function, this offspring is then distributed between
the two methods. The composition of the new population is defined by a deterministic
method, selecting the best fitness scores from the previous population and both offspring
sets. The stopping criteria is quite straightforward, we stop when the difference of the
sum of the fitness values of all individuals in two successive generations is smaller than
a predefined value.

After having executed ten consecutive times the experiments, the average of the best
fitness values and the average of the number of generations are calculated. Several pop-
ulation sizes have been tested, but in this paper we only present the most representative
size. All these experiments have been performed in an 8-nodes cluster of bi-processors
with Intel Xeon 2.4GHz with 1GB of RAM and Gigabit network running Linux 2.4.

With the aim of making a good comparison among the results achieved by all the
presented algorithms, we have done the Mann-Whitney statistical test to compare them.
The fitness values of the best solutions found in the search are used for this purpose.

It is important to highlight that the results presented in this paper depend on the
individual representation used for each of the problems.

5.1 Branin RCOS Function

Definition This problem is a two-variable continuous problem with three global mini-
mum and no local minimum. The problem is defined as follows [3]:

fB(x1, x2) =
(

x2 − 5
4π2

x2
1 +

5
π

x1 − 6
)2

+ 10
(

1 − 1
8π

)
cos(x1) + 10

−5 < x1 < 10
0 < x2 < 15

The global optimum for this problem is 0.397887 with the following values (x 1, x2) =
(−π, 12.275), (π, 2.275), (9.42478, 2.475).

This problem is considered easy not only because of the number of variables, but the
small chance to miss the basin of the global minimum in a global optimization proce-
dure. This is due to the probability to reach the global optimum using local optimization
methods, started with a small number of random points is quite high.

Results Branin is a very simple problem where in few generations (approx 19) all the
algorithms converge. This problem was solved using a population size of 300 individu-
als.

As it is possible to appreciate in the table 2, EDA gets better results than GA. How-
ever, the hybrid algorithm with the RANGE Participation Function obtains significant
better results than GA, EDA and the DYNAMIC Participation Function.



Table 1. Branin

GA EDA DYNAMIC RANGE
Average fitness 0.4016 0.3987 0.4000 0.3990
Average generation number 19 19 19 19

Table 2. Statistical Significance Tests for Branin

Mann-Whitney Test p-value
EDA better GA 0.1126
RANGE better DYNAMIC 0.2315
RANGE better EDA 0.2697
RANGE better GA 0.0790

5.2 Rastrigin Function

Definition It is a scalable, continuous, and multimodal function that must be mini-
mized. It’s the result of modulating n-dimensional sphere function with a · cos(ωx i).

fRa5(x) = a · n +
n∑

i=1

(
x2

i − a · cos(ω · xi)
)

a = 10; ω = 2π; n = 5
−5.12 < xi < 5.12

The global minimum for this problem can be found in the solution x i = 0, i =
1, . . . , n with a fitness value of 0.

Results This problem was solved using a population size of 1000 individuals.

Table 3. Rastrigin

GA EDA DYNAMIC RANGE
Average fitness 0.11656 4.10471 0.00013 0.00005
Average generation number 27 28 28 28

Although Rastrigin function has no lineal dependency among the variables, the per-
formance of EDAs (with the UMDA approach) is very poor. Nearby the optimum value
there are many local optima and EDAs seems to be very sensitive to this characteristic.

The table 4 presents the Mann Whitney significance tests for this problem. In this
case, EDA is better than GA with a p-value of 0.1126 and the RANGE Participation



Function is significantly better than the DYNAMIC Participation Function with a p-
value of 0.1601. Moreover, RANGE is better than GAs and EDAs with p-values equal
to 0.

Table 4. Statistical Significance Tests for Rastrigin

Mann-Whitney Test p-value
EDA better GA 0.1126
RANGE better DYNAMIC 0.1601
RANGE better EDA 0
RANGE better GA 0

5.3 Schwefel’s Problem

Definition Schwefel’s function is a continuous multimodal function. It is interesting
because it is a separable problem, it means that searching along the coordinate axes
gives optimal values for each of the components because function gradient is oriented
along the axes. As in the previous case global optimum is surrounded by several local
optimum in the neighborhood.

fS10(x) =
n∑

i=1

xi · sin(
√
|xi|)

n = 10
−500 < xi < 500

fS10(x∗) = min(fS10(x))

The global minimum for this problem can be found in the solution x i = 420.9687, i =
1, . . . , n with a fitness value of 0.

Results This problem has been solved with a population of 2000 individuals.
GAs perform very good in this problem because of the separability of the com-

ponent optimal values. Genetic combination tries to preserve good gene values when
generating new individuals. Although (see Table 6) GA is much better than EDA and,
one more time, RANGE outperforms DYNAMIC, GAs and EDAs.

Table 5. Schwefel

GA EDA DYNAMIC RANGE
Average fitness 3.129 1852.836 0.120 0.037
Average generation number 31 26 34 33



Table 6. Statistical Significance Tests for Schwefel

Mann-Whitney Test p-value
EDA better GA 1
GA better EDA 0
RANGE better DYNAMIC 0.0001
RANGE better EDA 0
RANGE better GA 0

5.4 The MaxBit continuous problem

Definition This problem is a redefinition of the binary MaxBit problem previously
presented. The aim is to maximize:

fM12(x) =
∑n

i=1 xi

n
xi ∈ {0, 1}; n = 12

In the continuous domain this problem is more complex, as the optimum value of
the function is located on the boundary of the search space.

Results This problem has been solved with a population of 250 individuals.
In this experiment (see Table 6), GA is much better than EDA and, one more time,

RANGE outperforms DYNAMIC, GAs and EDAs.
In the MaxBit Continuous problem EDA is slightly better than GA (with p-value

equal to 0). However, DYNAMIC and RANGE have the same behavior getting the
maximum value for all the problem executions.

Table 7. MaxBitCont

GA EDA DYNAMIC RANGE
Average fitness 0.9940 0,9998 1 1
Average generation number 36 40 33 34

6 Intensification and Diversification in GAs and EDAs

One interesting issue is to survey the evolution of the DYNAMIC and RANGE Partic-
ipation Functions in the series of different experiments. These functions, as we have
seen, adjust the participation ratio depending on the quality of the individuals each of
the method is providing. This measure has been indirectly used to evaluate the quality
of each of the methods across the continuous generations of one algorithm.
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Table 8. Statistical Significance Tests for MaxBitCont

Mann-Whitney Test p-value
EDA better GA 0
RANGE better DYNAMIC 1
DYNAMIC better RANGE 1
RANGE better EDA 0
RANGE better GA 0

In Figure 2 the evolution of the two different participation functions is shown. Being
the first one associated to the DYNAMIC participation function and the second one to
the RANGE participation function. Moreover we have introduced an additional section
at the bottom of the figure with the aim of clarifying the progress of diversification and
intensification in the optimization process.

DYNAMIC participation function (Figure 2.a) behaves with smooth variation in the
rations for each of the evolutionary methods. As diversification features are required in
early steps of the process ,during the first generations, genetic algorithms perform better,
and therefore their participation ration increases. However, in a second stage, EDAs get
profit from their better intensification performance and this characteristic causes that
the ration of participation is inverted. The shape of this participation function is similar
in all the experiments, and the variations are based on the specific nature of the problem
itself.

RANGE participation function (Figure 2.b) presents a similar behavior in general,
although (i) there is an abrupt transition between the region in which GAs exploit di-
versification and the moment in which EDAs are necessary to converge to the optimum
value via intensification. (ii) in MaxBitCont problem there are similar proportions of
both methods during all the evolution.

7 Conclusions and future work

In this contribution a new Participation Function for the hybrid GA-EDA algorithm has
been presented. The new function provides a direct adaptability to the results achieved
by each of the participating algorithms. This performance seems to fit better at the
switching point in which the importance of the diversification decreases and intensifi-
cation is more required to obtain the optimum value.

Besides, diversification and intensification of both GA and EDA algorithms have
been analyzed. This study requires a deeper research to evaluate the theoretical benefits
and the quantitative results of these two algorithms according to these concepts.
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