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Abstract—Complexity has always been one of the most
important issues in distributed computing. From the first
clusters to grid and now cloud computing, dealing correctly
and efficiently with system complexity is the key to taking
technology a step further. In this sense, global behavior
modeling is an innovative methodology aimed at understanding
the grid behavior. The main objective of this methodology is to
synthesize the grid’s vast, heterogeneous nature into a simple
but powerful behavior model, represented in the form of a
single, abstract entity, with a global state. Global behavior
modeling has proved to be very useful in effectively managing
grid complexity but, in many cases, deeper knowledge is
needed. It generates a descriptive model that could be greatly
improved if extended not only to explain behavior, but also to
predict it. In this paper we present a prediction methodology
whose objective is to define the techniques needed to create
global behavior prediction models for grid systems. This global
behavior prediction can benefit grid management, specially in
areas such as fault tolerance or job scheduling. The paper
presents experimental results obtained in real scenarios in
order to validate this approach.

I. INTRODUCTION

Large scale distributed systems have paved the way to
face complex, technical and scientific challenges that can not
be solved with traditional systems, due to their enormous
computing and/or storage requirements. Initiatives such as
BOINC [1], PlanetLab [2] or TeraGrid [3] and, more gen-
erally speaking, grid [4] or the recent cloud computing [5]
provide computing and storage resources that can be scaled
to a level difficult to imagine elsewhere. Nevertheless, the
complexity of these environments makes their management
difficult.

System understanding is the key to managing these sys-
tems. For this purpose, a deep knowledge about the behavior
of each single element is usually required. However, the
extraordinary number of different resources makes it almost
impossible to analyze and assign efficient policies to every
one. Most current grid management techniques are based
on this approach [6]–[8], dealing with each independent
resource’s behavior separately. A good alternative is to sim-
plify the understanding of the system as a whole, studying it
as a single entity instead of the set of elements that together
constitute it.

Following this idea, we rely on a methodology to model
the global behavior of large-scale distributed systems [9],
[10] (from now on it will be named Global Behavior Mod-
eling (GloBeM)). GloBeM’s aim is to identify regularities
in global grid behavior that can be explained. On the
other hand, the knowledge of not only the current system
behavior, but also of future behavior makes it possible
to improve system management. Nevertheless, predicting
system behavior is one of the most challenging tasks due to
the complexity and heterogeneity of a grid. In this paper, our
approach combines the use of machine learning prediction
techniques with a single entity vision of the grid in order
to improve the management of the whole system. Related
research has focused on resource-related management, while
our approach uses this single entity vision to focus on
service-related global aspects.

The paper is organized as follows. Section II presents the
GloBeM methodology to model a very complex environment
as a single entity. Section III shows the basis for this work
and an a-priori study to obtain an initial framework. Section
IV proposes two ways (simple and advanced) to build a sys-
tem prediction based on global behavior modeling. Section
V shows the evaluation of the proposal comparing it with the
other possibilities presented. Section VI describes previous
works related to the problem herein described. Section VII
presents the main conclusions and outlines future work.

II. GLOBEM

GloBeM is a methodology for modeling the global be-
havior of a grid [9], [10]. Its main objective is to build
an abstract, descriptive model of the global system state.
This enables the model to implicitly describe the interactions
between entities, which has the potential to unveil non-
trivial dependencies significant for the description of the
behavior, which otherwise would have gone unnoticed. This
unique features make GloBeM particularly useful in grid
management, especially because they provide the means
to capture complex interactions among components in a
simple yet comprehensive finite state machine behavior
model whose states can be directly mapped to the behavior
patterns we want to identify.



GloBeM methodology aims at constructing models with
the following four general characteristics:

• Specific state definition: State characteristics and
transition conditions are unambiguously specified. The
number of states is minimal for usability reasons.

• Stability: The resulting model is a close approximation
of the behavior of the system in time, both with
respect to the environment and the usage scenario of
the service.

• Simplicity: The resulting model is easy to understand
and provides meaningful insight into the system’s be-
havior.

• Relevance to service: The model states are semanti-
cally related to the functionality provided the system.
This ensures that the observed behavior can be ex-
plained in terms of what is expected from the service,
thus enabling correlations to quality of service.

GloBeM follows a set of procedures in order to build
such a model, starting from monitoring information that cor-
responds to the observed behavior. These basic monitoring
data are then aggregated into global monitoring parameters,
representative of the global grid behavior instead of each
grid resource separately. This aggregation can be performed
in different ways, but it normally consists in calculat-
ing global statistic descriptors (mean, standard deviation,
skewness, kurtosis, etc.) values of each basic monitoring
parameter for all grid resources present. This ensures that
global monitoring metrics are still understandable from a
human perspective. This global information undergoes a
complex analysis process in order to produce a global
behavior representation. This process is strongly based on
machine learning and other knowledge discovery techniques,
such as virtual representation of information systems (VR
spaces) [11], [12]. Figure 1 depicts this process.

A behavior model presents the following features:
• Finite state machine: The model can be expressed as a

finite state machine, with specific states and transitions.
The number of states is usually small (between 3 and
8).

• State characterization based on monitoring param-
eters: The different system states are expressed in
terms of the original global monitoring parameters. This
ensures that its characteristics can be understood and
directly used for management purposes.

• Extended statistical information: The model is com-
pleted with additional statistic metrics, further expand-
ing the state characterization.

III. INITIAL CONSIDERATIONS AND A-PRIORI STUDY

GloBeM models provide useful information about the
system behavior, but they are strictly descriptive in nature.
They can be used to understand and optimize a grid, but
they provide little knowledge about the system evolution
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Figure 1. How GloBeM works

over time and/or its future state. In order to further increase
their usefulness, GloBeM models could be combined with
predictive techniques, capable of foreseeing future events.
This would enable the management system to act before such
events actually occur, avoiding global faults or any other
possibly dangerous situation and improving performance
and/or dependability.

In this paper we present a set of algorithms designed to
create global state prediction models in terms of GloBeM
behavior descriptions. They are based on machine learning
and time series analysis techniques. A set of basic elements
can be distinguished in all of them:

• The set of grid states S = {s1, s2...sn}.
• The behavior model B(t) generated using the GloBeM

methodology. It describes the grid states S and the
events that cause a transition from one state to another.
At any instant t, B(t) = sk | sk ∈ S, where sk is the
grid state in that instant.

• The prediction model P (t) that predicts the futures
states indicated by the behavior model. At any instant
t, P (t) = B(t+ 1).

• The training data. This is the historical grid monitor-
ing data set used to create the behavior and prediction
models. It contains a log of values of the monitoring
parameters used by the behavior model in order to
determine the current state and the associated global
state.



• The test data. This is a different set of historical grid
monitoring data. Although it is similar to the training
data, it is much larger and it is used to evaluate the
prediction model accuracy.

In basic terms, given a set of current monitoring values,
the behavior model indicates the current grid state, but it
provides no information about the future. Given the same
set of values and a history of past ones the prediction model
will be able to predict the future state. The accuracy of this
prediction will depend on the quality of the training data
and the algorithm used to generate the prediction model. To
measure this accuracy, we use the F1 score [13]. This is a
statistical measure of a test accuracy that can be interpreted
as a weighted average of the precision and recall of a certain
classification. An F1 score reaches its best value at 1 and
worst score at 0. We consider our prediction model as a
classifier (it classifies each instant as belonging to the class
associate with the future state) and we test it through the
test data. Precision is defined as the number of correctly
predicted instants by the model divided by the total number
of predicted instants and recall is defined as the number of
correctly predicted instants divided by the total number of
existing instants. In a more formal way, precision and recall
can be defined with the following equations:

precision =
true positives

true positives+ false positives
(1)

recall =
true positives

true positives+ false negatives
(2)

Finally, the F1 score is defined as:

F1 = 2 · precision · recall
precision+ recall

(3)

As it can be seen, the F1 score measures the predictor’s
accuracy in a better way a simple percentage of correctly
classified instances would do, since it incorporates informa-
tion about false positives and false negatives as well as true
positives. This is an accurate statistical measure, widely used
and commonly accepted in the scientific community.

The test data is used to calculate the two different versions
of the F1 score for any given prediction model P (t):

• Total F1: Score calculated for the whole test data set.
• Transitions F1: Score calculated only for the state

transitions observed in the test data set. This score helps
to evaluate how well state transitions are predicted.

The second value is important because it has been demon-
strated that GloBeM’s models of these environments tend to
be very stable [10] (GloBeM hides the vast complexity of
a large distributed system) and state transitions represent
major changes in the system behavior. From a general
perspective, predicting global state transitions could be the
key to improving grid management in many areas (job

scheduling, dependability and fault tolerance, etc). In most
cases a change of global state will require a change in
the management policies, specially to prevent undesirable
situations or states where some service requirements are not
met (faults and/or failures, decreases in quality of service,
etc). A prediction model strongly benefits the management
system in these critical situations (transitions), making it
possible to anticipate and act ahead of faults and changes.
The best prediction models would score highly on total and
transitions F1 scores.

A. A-priori study

In order to obtain a basic framework, an a-priori study
was made. For this study real monitoring data from Planet-
Lab [2] were used. PlanetLab is a global scientific research
network, used by researchers at top academic institutions
and industrial research labs to develop new technologies for
distributed storage, network mapping, peer-to-peer systems,
distributed hash tables, and query processing. PlanetLab
currently1 consists of 1138 nodes at 519 sites, scattered all
over the world. It presents all the heterogeneity, complex-
ity and variability expected from any real grid computing
infrastructure, and therefore it is an excellent scenario for
testing the global behavior prediction techniques presented
here.

PlanetLab provides free access to a monitoring tool called
CoMon [14], which is capable of presenting detailed infor-
mation about the current state of each active node in the
system. Many different parameters are monitored, including
CPU usage, memory usage, network traffic, architecture
characteristics, I/O operations, an so on. Information from
this tool is being gathered in order to create a comprehensive
monitoring database of the historical evolution of PlanetLab.
For this study a total of 8 months of PlanetLab monitoring
information were used. Data was aggregated in 1 hour
monitoring intervals and divided in many subsets, in order
to produce an extensive collection of training sets. Subsets
sizes ranged from 10 to 110 days, with different degrees of
overlapping between them. Altogether a set of 220 training
subsets was created.

Using this training data set, different behavior models
were produced in order to explain the behavior observed
in the whole data set. Then, for each behavior model,
statistics about percentage of transitions and state stability
were calculated.

Table I
A-PRIORI STUDY RESULTS

mean standard deviation
Stable periods 90.1% 2.51

State transitions 9.9% 2.51
Stable period duration 18.28h 8.22

1November 2010



Summary values of the a-priori study are presented in
Table I. As can be seen, the average number of state
transitions is quite low (' 10%), which illustrates the
previously stated idea that GloBeM models are very stable,
with few but relevant transitions. These transitions, however,
are crucial events, representing major changes in the system
behavior that normally involve clear modifications in aspects
such as performance or dependability. From a management
point of view, these are the key situations that need to be
anticipated, creating the need of a prediction model capable
of foreseeing state transitions.

As part of the a-priori study, a basic predictor was
constructed, in order to provide a basis for evaluation and
comparison. This was called the naı̈ve predictor.

The naı̈ve predictor

As the simple prediction model reference for the a-priori
study, the naı̈ve predictor PN (t) was defined in the following
terms:

PN (t) = B(t) (4)

This basically means that PN (t) will always predict the
future state to be the current state, as given by the behavior
model. In consequence, the prediction will be correct as long
as no state transition occurs. When the transition takes place,
the PN (t) predictor fails, as it always expects the state to
remain stable. The accuracy of this predictor-that-does-not-
predict will obviously depend on the stability of the system,
as it only fails when transitions occur. A study of the F1
score values would provide a basic frame of reference for
prediction models evaluation, defining when predicting is
actually better than a simple descriptive approach with no
anticipation.

Using the 220 PlanetLab monitoring training sets to
generate different behavior models, the accuracy of the
naı̈ve predictor was evaluated. Table II shows the predictor
accuracy metrics for PN (t). As it can be seen in table II,
Even though the naı̈ve predictor is incapable of predicting
any transitions (F1 (transitions) = 0.0), the total average
is very high (F1 (total) = 0.87). This is consistent with
the statistical results presented in Table I. The system is
very stable with very few state transitions. Nevertheless,
detecting these transitions is our main objective, as these
are the relevant events that are identified and give meaning
to the GloBeM behavior model.

Table II
NAÏVE PREDICTOR ACCURACY METRICS

F1 (total) 0.87
F1 (transitions) 0.0

IV. PREDICTING GLOBAL BEHAVIOR

As was explained, state transitions in GloBeM behav-
ior models indicate crucial events in the system, usually
requiring the adaptation of global management policies.
In this section we present two approaches to global state
prediction, in order to anticipate future states and state
transitions in a grid system. The first one is a basic, single
variable prediction strategy, based on traditional time series
analysis techniques and machine learning. The second one is
a far more complex, multi-stage approach, introducing some
advanced concepts.

A. Basic predictor

Considering the system’s global state as a variable, at a
given time t B(t) = st | st ∈ S, and therefore st−1 would
be the state at time t− 1, st−2 the state at time t− 2, and
so on. We can consider the associated time series as:

St = {st, st−1, st−2, st−3, ...}

For any given instant in time t, St will contain the past
and present state values of the system, showing its historical
evolution.

Using traditional time series analysis techniques, we de-
fine our basic predictor model as a function capable of
calculating the future state based on the present and past
values of the global state time series variable St:

PB(t) = f(st, st−1, st−2, st−3, ...) (5)

In practical terms, there is only so many instants in the
past that can be considered and therefore we redefine PB(t)
as:

PB(t, w) = f(st, st−1, st−2, ..., st−w) (6)

where w is the number of past values considered in the
prediction. We call w the predictor window.

The PB(t, w) algorithm consists of three phases, aimed at
creating a prediction model for a GloBeM behavior model.
These phases are illustrated in Fig. 2 and described below:

1) Training data classification: Using the behavior
model, the training data are classified, in order to de-
termine the state associated to each monitoring instant.
The result is an extended version of the training data
set, including the state variable along with monitoring
parameters.

2) Time series selection: The values from the state
variable in the training data set are selected, generating
the St time series.

3) Machine learning: Using a machine learning algo-
rithm, a prediction model is trained using data from the
St time series. The number of past values the machine
learning algorithm can include in its calculations is
determined by the w value defined above.
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Figure 2. Basic predictor phases

The result is a prediction model PB(t) for the St time
series. The exact form of this model depends on the machine
learning algorithm used. At this point, instead of selecting
one specific algorithm, we have proposed the following set
of them:

• C4.5 [15] is a statistical classifier of the ID3 family
of algorithms that generates a model in the form of
a classification tree. The leaf nodes of the decision
tree contain the class name, whereas a non-leaf node
is a decision node. The decision nodes represents
attribute tests, with each branch (to another decision
tree) being a possible value of the attribute. The C4.5
algorithm extends ID3 providing mechanisms to deal
with continuous and missing values.

• The K-Nearest Neighbors algorithm (KNN) [16] is a
classifier algorithm based on agreement. Thus an object
is assigned to the class most common amongst its k
closest neighbors.

• Logistic regression [17]. The aim of a regression anal-
ysis [18] is to know the statistical relation existing
between a dependent variable and one or more inde-
pendent variables. In this sense, a functional relation
between the variables must be postulated. In this case,
data are fit to a logistic curve.

• A Multi-Layer Perceptron (MLP) [19] is an artificial
neural network model that selects the corresponding
output for the specific input data. The MLP extends
the standard linear perceptron using several layers of
neurons.

• Naı̈ve Bayes [20], [21] is based on applying Bayes’
theorem. This classifier is a model of conditional in-
dependence of predictor attributes, ensuring an optimal
classification if explicit assumptions are met.

Our objective is to provide an extensive set of machine
learning algorithms, in order to present as complete a study
as possible. The five selected techniques are well known,
widely used and scientifically relevant. In Section V, ex-
perimental results are presented to illustrate which machine

learning technique is more adequate in our case, and the
overall performance of the basic predictor.

B. Multi-stage predictor

After the basic predictor PB(t) was developed, the need of
a more advanced prediction technique appeared, motivated
by several issues.

First, as shown in the a-priori study, the amount of state
transitions observed in the GloBeM models is quite low.
Training data sets are composed mostly of data that represent
stable instants where no transition takes place. When this
training data sets are used in machine learning algorithms,
they usually lead to prediction models that are over-fitted
to predict stability and less concerned with transitions. In
situations where the disproportion among stable instants
and transitions is extreme, the machine learning algorithm
basically disregards transitions, as they represent a very
uncommon situation.

Second, the behavior state variable (and its associated time
series St) is clearly dependent on the global monitoring
parameters, as it is derived from them by the GloBeM
model. This information is not included in the PB(t) model,
which limits its efficiency. In order to deal with these issues,
a more complex predictor was developed. We consider
again the state time series St and the predictor window w.
We incorporate also the set of global monitoring variables
{V1, V2, ..., VM} selected by GloBeM2 to construct the
behavior model and the associated time series for each one:

V 1t = {v1t, v1t−1, v1t−2, ...}
V 2t = {v2t, v2t−1, v2t−2, ...}

...

V Mt = {vmt, vmt−1, vmt−2, ...}

As it is stated below, these values are not basic resource
monitoring metrics. GloBeM uses global, aggregated pa-
rameters to generate its behavior model. These parameters
are calculated using basic monitoring metrics, and then
automatically selected, identifying those that carry the most
relevant information. The time series V 1t, ..., V Mt are gen-
erated using those global aggregated monitoring parameters
selected by GloBeM as representative of the grid behavior.
We define the predictor PM (t) as follows:

PM (t) = f(st, ...st−w, v1t, ...v1t−w, ...vmt, ...vmt−w)
(7)

As can be seen, the first difference between PM (t) and the
previous PB(t) is that the global monitoring parameters are
also considered in the prediction, and not just the present
and past state. In addition, PM (t) improves the transition
prediction accuracy by means of a multi-stage prediction

2GloBeM selects automatically the variables that has a high influence on
the model description
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process. This process structure can be seen in Fig. 3. The
multi-stage predictor is composed of three basic elements:

• The metapredictor MP (t) is a prediction model
trained to predict state transitions. It is capable of
foreseeing whether the system is going to change state,
but not the specific state it is going to transit to.

• The naı̈ve predictor PN (t), as defined in Section
III-A, is used when the metapredictor indicates that no
transition is going to happen. This strongly simplifies
the prediction process in those cases, as no prediction
is really made.

• The transition predictor PT (t) is a prediction model
trained to anticipate only state transitions. It is trained
using global monitoring data from instants in time when
state transitions happen, and therefore it is generated
specifically for those situations. The transition predictor
is used when the metapredictor anticipates a transition,
maximizing the probability of correct prediction in
those cases without affecting the general prediction
accuracy.

As can be seen in Fig. 3, the multi-stage predictor uses its
metapredictor to determine if transitions are going to happen.
In case a global state transition is anticipated, the multi-stage
predictor then relies on its transition predictor to determine
the future state. In case no transition is foreseen, the multi-
stage predictor simply anticipates no change, providing the
naı̈ve predictor result as its final prediction.

The metapredictor

The construction of the metapredictor model is carried out
in four phases, as shown in Fig. 4. The process is similar
in essence to the one previously described for the basic
predictor, but more complex. The four metapredictor model
construction phases are:
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Figure 4. Metapredictor model construction phases

1) Training data classification: In the same way as for
the PB(t) model, the training data are classified using
the behavior model, in order to determine the state
associated to each monitoring instant.

2) Time series selection: In this case not only the values
from the state variable are selected, but also the ones
from the global monitoring variables, creating the time
series set {St, V 1t, ..., V Mt}.

3) Undersampling and attribute selection: In order to
increase the quality of the time series training set
generated, two special refining techniques are used
in this phase. These are undersampling and attribute
selection and they are described in detail below.

4) Machine learning: Finally the machine learning al-
gorithm is executed in this phase, in a similar way
as in the basic predictor. As in that previous case,
we selected five possible algorithms to be used: C4.5,
KNN, logistic regression, MLP and Naı̈ve Bayes.

Undersampling is a data filtering technique commonly
used in machine learning procedures where, given a clas-
sification of a training set, the proportions in which each
class appears are clearly uneven. In our case, if we divide
the data set in stable instants and state transition instants,
we find out most of them belong to the first group. As was
explained before, in these cases machine learning algorithms
tend to focus only on the majority class (stable instants,
in our case), almost completely ignoring the minorities. To
avoid this phenomenon, the majority class is reduced to a
statistically significant subset of values, representative of the
whole group but of a size similar to the minority groups
(or at least not so overwhelmingly larger). This gives the
machine learning technique a chance to correctly identify
all classes.

To achieve this we used the k-means clustering algorithm
[22]. K-means classifies the data in a specified number of



classes, with similar observations assigned to the same class.
As a result, it produces a list of representative values, called
centroids, one for each class. To undersample the metapre-
dictor training data set, the observations that represent stable
instants (much more frequent than the ones representing state
transition instants) are separated and then classified using k-
means. The metapredictor algorithm sets a number of classes
for the k-means algorithm to the number of state transitions
observed, and takes the resulting centroids as representative
observations.

A second training set optimization carried out in the
metapredictor construction algorithm is attribute selection.
As shown in (7), the PM (t) model is defined from a function
of many parameters, basically the present and past values of
the system’s global state and global monitoring parameters,
given a certain predictor window w. When the number
of global monitoring parameters and w is high, this will
originate a function with a very large set of parameters. Not
all these parameters are statistically relevant for prediction
purposes. However they increase the training data set size,
making the subsequent machine learning process difficult.
In order to select only the statistically representative param-
eters for the machine learning process, the metapredictor
algorithm calculates the autocorrelation coefficients for each
input time series.

Autocorrelation coefficients [23] are a commonly used
time series analysis tool. They indicate the correlation
(usually the Pearson correlation coefficient) between present
and past values of a time series, at any given time. For
instance, a time series of a variable whose value at any
time is dependent only on its last two values will score
closer to 1 in its two first autocorrelation coefficients and
close to 0 in the rest. Calculating this coefficients will
indicate that no other past observations are needed in order to
predict the variable value. In the metapredictor construction,
the first w autocorrelation coefficients are calculated for
each time series used ({St, V 1t, ..., V Mt}). Then, only the
relevant historical values of each series (score closer to 1)
are selected, effectively reducing the number of parameters
provided to the machine learning algorithm.

Finally, the machine learning algorithm is configured to
generate a model that only predicts whether the system
global state is going to remain stable, or a transition will
occur. The final model produced is called the metapredictor
model.

The transition predictor

The second part of the multi-stage predictor is the tran-
sition predictor PT (t). The construction of this prediction
model takes place in the following six phases (Fig. 5):

1) Training data classification: In the same way as for
the PB(t) and MP (t) models, the training data are
classified using the behavior model.
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Figure 5. Transition predictor model construction phases

2) Time series selection: Like in the case of MP (t),
the state and global monitoring variables are selected,
creating the time series set {St, V 1t, ..., V Mt}.

3) Transition selection: At this point, the time series
training set is filtered, in order to select only values
related to state transitions. This creates a data set con-
taining only specific information about global changes
of state.

4) Time series differencing: The time series are differ-
enced in order to remove unnecessary information that
could affect the subsequent machine learning process.
This process is explained in detail below.

5) Attribute selection: In a similar way as in the case
of MP (t), time series data set attributes are selected
using autocorrelation coefficients.

6) Machine learning: Finally the machine learning al-
gorithm is executed in this phase, in a similar way
as in the previous predictors. Again we selected the
same five possible algorithms to be used: C4.5, KNN,
logistic regression, MLP and Naı̈ve Bayes.

Differencing is a commonly used time series analysis
tool. Its objective is to eliminate any possible trend in the
series, leaving only relevant information about changes in
the variable. From a general perspective, if we consider the
time series Xt = {xt, xt−1, ...}, first order differencing Xt

consists in replacing it with a new series Yt defined as:

Yt = {yt, yt−1, ...}
∀yk ∈ Yt, yk = ∇xk = xk − xk−1

During construction of the transition predictor, first order
differencing is applied to all numeric series in the time series



training data set in order to provide only useful information
to the machine learning algorithm.

Once the six previously explained phases take place, the
result obtained is a predictor model specifically trained to
detect global state transitions. When it is incorporated inside
the multi-stage predictor, it is only used when the metapre-
dictor model indicates a transition will occur. The combined
use of PN (t), MP (t) and PT (t) carried out by the multi-
stage predictor generates a more efficient prediction model
than PB(t), specially anticipating global state transitions. In
the following section an experimental study is presented.

V. EXPERIMENTAL RESULTS AND EVALUATION

Using the same PlanetLab scenario described in the a-
priori study (see Section III-A), a series of experimental
tests were performed. The objective of these tests was to
evaluate the accuracy of the different prediction algorithms
proposed, using the previously described metric F1. The
general characteristics of the test series can be seen on Table
III.

Table III
EXPERIMENT CHARACTERISTICS

Total size of test data 8 months
Data time resolution 1 hour
Size of training data 60, 70, 80, 90 or 100 days
Total number of training models 100 (20 of each size)
Predictor window (w) 10, 20, 30, 40 or 50 hours
Total number of configurations 500

As presented on the table, several different predictor
window values were used. Also training sets of different
sizes were included in the experiment series. Each exper-
iment was generated using a specific training set with a
fixed w value, giving a total number of 500 experimental
configurations. Each experiment was performed using the
five machine learning algorithms considered: C4.5, KNN,
Logistic regression, MLP and Naı̈ve Bayes. The specific
parameters of these algorithms were set to generic purpose
values, in order to provide a more general perspective. Table
IV shows these configurations. Please refer to the above
mentioned references concerning these machine learning
algorithms for further analysis of these parameters.

A. Basic predictor evaluation

The basic predictor PB(t) was evaluated using the exper-
iment series previously described. For each experiment the
F1 values were calculated. Fig. 6 shows the average results
obtained, separated by machine learning algorithm used. The
issues previously anticipated in Section IV-B can be clearly
seen here, causing a reduction in the predictor accuracy.
The total F1 value ranges between 0.83 and 0.90 and the
transitions F1 between 0.13 and 0.22, which is an improve-
ment over the Naı̈ve predictor. However, even though the
predictor is capable of anticipating a few transitions, the

Table IV
MACHINE LEARNING ALGORITHMS CONFIGURATION

C4.5
Confidence factor 0.25
Min. num. objects per leaf 2
KNN
K 1
Logistic regression
Log-likelihood ridge 10−8

MLP
Learning rate 0.3
Momentum rate 0.2
Number of epochs 500
Number of hidden layers (attribs+ classes)/2

transition accuracy is too low to be considered acceptable.
These results justify the need for a more complex approach.
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Figure 6. Basic predictor results

B. Multi-stage predictor evaluation

In a similar fashion to the basic predictor, the multi-stage
predictor was evaluated, using the five suggested machine
learning algorithms. The results differ depending on the ma-
chine algorithm used (Fig. 7). All C4.5, KNN and Logistic
Regression experiments produced very good total F1 scores
(between 0.85 and 0.89) which guarantees their overall
accuracy. Furthermore, KNN experiments shown also a high
transitions F1 score (0.63), demonstrating that the multi-
stage predictor is capable of correctly anticipating global
state transitions. These are considered to be fairly good
results, given the intrinsic difficulty of anticipating this rare
but critical events. Other algorithms, however, obtain worse
results (specially Naı̈ve Bayes). Classification algorithms
performance always depends greatly on the characteristics
of the data to be classified, and there is no single classifier
that produces optimal results for any given problem (a
phenomenon that may be explained by the “no free lunch”
theorem3 [24]). Specific reasons behind the differences ob-
served in the multi-stage predictor accuracy when using
different machine learning methods would require a study
of those algorithms, which is out of the scope of this paper.

3The “no free lunch” theorem states that “any two learning algorithms
are equivalent when their performance is averaged across all possible
problems”.



C4.5 KNN Logistic R. MLP N. Bayes
Algorithm

0.0

0.2

0.4

0.6

0.8

1.0

S
co

re

F1 (total)
F1 (trans.)

Figure 7. Multi-stage predictor results

VI. RELATED WORK

There are different research works which have addressed
the topic of behavior prediction in grid environments.

Rood and Lewis [25], [26] propose a multi-state model as
well as several prediction techniques in order to forecast the
availability of resources and the transitions into the model’s
states. This approach can improve scheduler efficiency. Al-
though the goal of this work is similar to ours, the main
difference is that in the former case, analysis and prediction
are performed at resource level. Our approach simplifies the
analysis dealing with a generic model of the grid, making
both the analysis and further decision-making approaches
easier.

In the work presented by Pietrobon and Orlando [27], the
prediction regarding whether a job fails or not is made by
means of regressive analysis applied to job running logs.
Unlike this work, our approach makes a behavior model of
the grid, which can improve scheduler effectiveness.

Li et al. [28] present an Instance Based Learning tech-
nique to forecast response times of jobs in grids by means of
historical performance data mining. This approach is based
on the definition of similarity between jobs. In a similar way,
Smith et al. [29] predict the run times of parallel applications
from past executions of similar applications. Cho et al.
[30] describe a user demand prediction approach, which
uses historical user demands in order to manage efficiently
grid resources. All these works are focused on user jobs
or user demands. Our approach predicts the state of a grid
infrastructure, which enables the application of enhanced
scheduling techniques that affect to the whole grid.

VII. CONCLUSIONS AND FUTURE WORK

Grid environments are suitable in high demanding sce-
narios where other computing solutions have traditionally
failed. However, one of the weakest aspects of these systems
is that they are difficult to manage due to their complexity
and dynamism. A good approach to simplifying grid under-
standing and management is to treat it as a single entity
instead of as a set of different elements that together form
it [10]. Although this alternative simplifies management, a

prediction phase was still required to largely improve it by
anticipating crucial changes in system behavior.

As explained in Section III, the process of predicting
these crucial changes is not an easy task, since grid systems
behave in a very stable way (from a global modeling
perspective). Given the stability of behavior models, tran-
sitions or behavior changes rarely occur and, therefore,
are difficult to predict. This makes any basic statistical
predictor incapable of finding such changes. Given a correct
selection of the machine learning algorithm, our multi-stage
predictor proposal is capable of predicting a high percentage
of these transitions, as well as being able to recognize the
system stability, as described in Section V. Consequently, the
prediction proposed in this paper can significantly benefit
grid management systems, enabling one to act ahead of
system changes and to select suitable management policies
to deal with those changes before they occur.

Regarding future work, we are planning to test the benefits
and improvements that our proposal entails in different grid
management fields, such as dependability, quality of service,
data management and job scheduling. At the same time, we
will continue improving our multi-stage predictor scheme
with the aim of being able to provide even better accuracy
results.
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