
An agent architecture for managing data resources in
a grid environment

Maŕıa S. Ṕereza, Alberto Śancheza, Jemal H. Abawajyb,
Vı́ctor Roblesa, Jośe M. Pẽnaa

aDATSI. FI. Universidad Polit́ecnica de Madrid. Spain,
{mperez,ascampos,vrobles,jmpena}@fi.upm.es

bDeakin University, Victoria, Australia, jemal@deakin.edu.au

Abstract

Agent paradigm has been sucessfully used in a large number of diverse fields and initiatives.
One of this initiative is the definition of MAPFS, a parallel file system based on a multiagent
architecture. The use of a multiagent system impliescoordinationandcooperationamong
its agents. MAPFS is intended for clusters of workstations, where the agent technology is
applied in order to provide a communication model between agents with different roles.
The adaptation of MAPFS to a grid environment is named MAPFS-Grid.

This paper describes the conceptual agent framework and the communication model used
in the design and development of MAPFS-Grid, which provides the management of data
resources in a grid environment.

Key words: Multiagent system, cooperation, parallel file system, data grid.

1 Introduction

A large number of application of the agent technology have been made in diverse ar-
eas, such as business [19], electric management [18,7], control [2,3], networks [11]
or in general, industrial applications [16,17].

Agent technology provides several concepts, which allow analysts to design appli-
cations in a way close to the human thought. Furthermore, agents provide applica-
tions with useful features for dealing with complex and dynamic environments.

Nevertheless, there exist important differences betweensystem programmingand
agent technology. The main differences are:

Preprint submitted to Elsevier Science 20 January 2006



• Agent paradigm interact to the system at a higher level than system program-
ming.

• The efficiency is a very strict requirement in the case of the system programming.
Agent technology introduces an abstraction layer and, thus, it involves a lost of
efficiency.

Nevertheless, these disadvantages can be avoided, since the agent paradigm differ
clearly agent theory, which provides the concepts, and agents architectures, which
provides concrete solutions and implementations.

MAPFS is a successful application of the agent theory in the development of a
parallel file system [25]. The same philosophy is applied to the design of MAPFS-
Grid [26], the adaptation of this parallel file system to grids.

This paper describes the use of the agent theory as conceptual framework in the
design and development of MAPFS-Grid as well as the MAPFS-Grid cooperation
model.

The outline of this paper is as follows. Section 2 introduces the MAPFS-Grid sys-
tem and describes the related work. Section 3 describes the generic structure of
an agent in MAPFS-Grid. Section 4 analyzes the MAPFS cooperation model and
describes the communication features of MAPFS-Grid. Section 5 shows the im-
plementation and evaluation of MAPFS, in order to measure the influence of the
agents in the management of data resources. Finally, Section 6 summarizes our
conclusions and suggests further future work.

2 Problem Statement and Related Work

2.1 MAPFS-Grid overview

MAPFS-Grid [26] provides a grid-like interface to a parallel file system based on
clusters, that is, MAPFS [25]. MAPFS (Multi Agent Parallel File System) has been
developed at the Universidad Politécnica de Madrid in 2003. The main contribu-
tion of MAPFS is the conceptual use of agents to provide applications with new
properties, with the aim of increasing their adaptation to dynamic and complex
environments.

MAPFS is intended to use in a cluster of workstations, transfering in parallel among
all the cluster nodes. On the other hand, MAPFS-Grid allows heterogeneous servers
connected by means of a wide-area network to be used as data repositories, by
storing data in a parallel way through all the clusters and individual nodes which
make up the grid.

2



Figure 1 shows the overview of the MAPFS-Grid system. This system provides two
levels of parallelism:

(1) The high level provides parallelism among the set of clusters and nodes of a
grid, that is,inter-cluster parallelism.

(2) The low level provides parallelism among the set of nodes of each cluster, that
is, intra-cluster parallelism. This is made through theParallel Data Access
Service (PDAS), which allows parallel I/O operation to be made in a cluster
environment, providing access to the MAPFS file system.

Cluster Cluster

B0 B1 B2 B3 B4 B5

Application

PDAS1

B0 B3

PDAS3

B5

Server

B2

PDAS2

B4B1

Block 0

Block 3

Block 2

Block 5

Block 1 Block 4

Block fragmentation

MAPFS-GridClient

PARALLELISM. LEVEL1

PARALLELISM. LEVEL 2 (MAPFS) PARALLELISM. LEVEL 2 (MAPFS)

Fig. 1. MAPFS-Grid Overview

On the other hand, MAPFS is based on a multiagent architecture, named MAPFSMAS,
which provides support to the main subsystem (MAPFSFS) in three different ar-
eas:

3



• Access to the information: This feature is the main task of MAPFSMAS. Data
is stored in I/O nodes (a set of disks distributed among several server nodes).
Two different kind of agents are used for providing this capability:Extractor
agentsare responsible for invoking parallel I/O operations anddistributor agents
distribute the workload to extractor agents.

• Caching service: MAPFS takes advantage of the temporal and spatial locality
of data stored in servers. A cache has a copy of the most recently used data
in a storage device, which is faster than the original storage device. However,
by using a cache causes an important coherence problem. Inside MAPFSMAS,
there is a set of agents which manage this feature. These agents are namedcache
agents. They are responsible for using a cache coherence protocol and control
data transfer between both storage devices.

• I/O optimizations: MAPFS takes advantage of different I/O optimizations tech-
niques, such as caching and prefetching or use of hints. The use of the agents
methodology in this area makes flexible such I/O optimizations. For this pro-
posal,hints agentsare used.

Files are stored finally in several servers, which constitute the server-side of the
underlying architecture. The grouping of servers from a logical point of view in
MAPFS is denominatedstorage group[27]. The adaptation of this concept to a
grid environment is explained in [28].

As we mentioned previously, the use of a multiagent system implies coordination
among their agents. The main goal of the agents cooperation is the interaction
among such agents for achieving a common objective in a distributed system.

2.2 Related Work

Nowadays, most of the frameworks are influenced by their environment. Thus, the
environment conditions affect their performance in a dynamic way. For this reason,
the use of the agent technology is being widely used, since this paradigm adapts to
changing and dynamic environments. The agent paradigm is usually implemented
on distributed systems.

The parallel execution of different processes allows a cluster of workstation to im-
prove its performance. Agents are also useful for achieving this goal, since agents
may run different tasks, which constitute partial solutions of the global aim.

Other intrinsic characteristic of agents is the cooperation. The principal goal of the
cooperation among the agents is the interaction of such agents in order to achieve
a common objective in the distributed space.

The agents cooperation can be made through a set of steps [15]:

4



• It is necessary to provide every agentgoals, that is, descriptions of the desired
state of the agents “world” or environment.

• Every agent must make a set ofactions in order to modify their state. Also,
it must buildplans that contain precise instructions for achieving the goals or
objectives.

• Every agent must have planned a set ofevents.
• In accordance with the planning, the agent must run the plan.
• Thecooperationis achieved usingshared plans, that is, making the planning in

a shared way.

In a complex system, the interaction of several agents is required and, thus, a mech-
anism of communication between agents is necessary. For achieving agents com-
munication and interoperability, it is necessary to use:

• A common language;
• common ideas about the knowledge agents interchange;
• capacity for interchanging this information.

For standardizing this way of communication, a common or standard language is
used. KQML (Knowledge Query Manipulation Language) [6,1,8], is one of the
most known agent communication languages. This language is composed of a set
of messages, known asperformatives, which are used for specifying agent commu-
nication elements. In [21], Labrou and Finin widely describe the KQML reserved
performatives. Some of them are used in MAPFS.

The idea of using agents to access data is not an innovating idea. Nowadays, a great
number of agents platforms are widely deployed for accessing web databases. The
web popularity has created the need for developing Web Distributed Database Man-
agement Systems (DBMSs), obtaining simple data distribution, concurrency con-
trol and reliability. However, DBMSs offer limited flexibility, scalability, and ro-
bustness. Some suggestions propose the use of agents to solve this problem [29,24].

With respect to file accesses, several approaches have been made. Two paradigmatic
approaches are the following:

• MESSENGERS [4] is a system based on agents used for the development and
deployment of distributed applications from mobile agents, calledmessengers.
This system is composed of a set of daemons distributed in every node an used
for managing received agents, supervising their execution and planning where
agents must be sent.

Several aspects related to the system performance are adddressed in [13].
Some of them are load balancing, agent code optimization, and availability and
efficient sharing of available resources.

By analyzing the operation levels of an application, the data access perfor-
mance influences in the system performance because I/O system is the bottle-
neck of most systems due to its access speed, that is notably smaller than the

5



memory access and the CPU speed. Improvements focused on improving data
accesses will improve largely the system global performance .

The use of agents allows MESSENGERS to use a non-shared local file system,
called LDFS [12], which is used for achieving the following goals:
· Local data access, which allows the access time to be reduced.
· Avoiding a bottleneck in the central server.

• DIAMOnDS [30] stands for Distributed Agents for MObile and Dynamic Ser-
vices, a system built under Java/Jini. This system is composed of a client module
that accesses data from a remote file system, where an agent is responsible for
managing this interaction.

Other research projects about agent systems for accesing files have been developed.
Nevertheless, there are not agent systems focused on the development of parallel
file systems features. MAPFS constitutes a new approach of this kind of systems.
MAPFS-Grid is its extension to a grid environment. The advantages of the applica-
tion of Software Agents and MAS to Grid computing have been also considered in
some papers [9,5]. Agents are characterised by their excellent negotiation abilities,
and as Grid systems embrace service-oriented computing, a bigger emphasis is put
on trading services between users and providers.

3 Generic structure of an agent in MAPFS-Grid

Agents provide a set of very interesting properties. Some of these characteristics are
autonomy, reactivity and proactivity, which makes the system flexible for adapting
to changing environments. According to Jenning et al. [20], the situation of the
agent and the flexibility are additional agents features.

On the other hand, as is described in the previous section, there are different types
of agents. Therefore, it is necessary to identify the role of every agent in the sys-
tem. This method have been already identified and used in some agent architec-
tures, such as MADKIT architecture [14]. This architecture defines the AGR model
(Agent-Group-Role), in which the role or task of an agent constitutes one of the key
concept. This role is the abstract representation of a function or service provided
by the agent. Analogously, in MAPFS-Grid the role is used for setting the specific
function of an agent.

Definition 1 In MAPFS-Grid, an agent is defined in a formal way as the following
tuple:

< Ag Id , Group , Role , Int Net >

where:

6



• Ag Id: Agent identification, which is used in order to identify every agent of the
system.

• Group: Storage group which the agent belongs to.
• Role: This field represents the kind of agent, taking values in the following do-

main: [Cache, Distributor, Extractor, Hint] . This domain can
be increased with other values, if other kind of service must be implemented.

• Int Net: This field represents the interaction network of an agent with other
agents of its storage group. This network can be implemented as a vector or
relations between the agentAg Id and the rest of agents of the same storage
group.

Agents cooperate in MAPFS-Grid in order to provide the overall functionality. The
MAPFS-Grid cooperation model is described in the next section.

4 MAPFS-Grid Cooperation Model

For modeling agents cooperation, several related concepts have been formalized:

• Firstly, every agent must know itsgoals, that is, descriptions of the desired state
of the agents “world” or environment. The goals depend on the kind of agent: ex-
tractor agents are subordinate to the distributor agents and they do not depend on
the environment. However, distributor agents goals are completely dependent on
the environment and are the most similar to the whole system goal. These goals
correspond to the user requests. Cache agents goals correspond to the desires or
requests of extractor agents. Every request of the information made by extractor
agents is solved by cache agents. If data is not available in the cache structure,
cache agents try to get data. Hints agents are only activated when optimization
techniques are used in the MAPFS file system. Formally, agents goals can be
notated and described in this way:
· gda: distributor agents goals
· gea: extractor agents goals
· gca: cache agents goals
· gha: hints agents goals

gda(x) = exists(d, Gy)

where x is a distributor agent belonging to any storage group
Sz/Sz ∈ Gy

∧ d is a concrete item
∧ existsis a predicate that indicates if a item is
available for an user in a storage group

7



gea(x) = serves(x, y)

where x is a extractor agent belonging to any storage
groupGz/y is a distributor agent belonging to the same
group
∧ servesis a predicate that indicates if x has satisfied
the request of the agent y

gca(x) = provides(x, y)

where x is a cache agent belonging to any storage
groupGz/y is a extractor agent belonging to the same
group
∧ providesis a predicate that indicates if x has the
data item requested by the agent y in the cache structure

gha(x) = provides hints(x, y)

where x is a hint agent belonging to any storage
groupGz/y is a cache agent belonging to the same
group
∧ provideshints is a predicate that is false
only when the agent x cannot get the metadata required
by the agent y. Otherwise, the predicate is true

• According to agents goals, plans contain precise instructions or actions for achiev-
ing such objectives. Again, actions and plans depend on the concrete kind of
agent:
· pda: distributor agents plans
· pea: extractor agents plans
· pca: cache agents plans
· pha: hints agents plans

8



pda(x) = if¬exists(d,Gy) −→ ∀y / is a ea(y)

∧ y ∈ Gy thenask(d, y)

where x is a distributor agent belonging to any storage group
Sz/Sz ∈ Gy

∧ d is a concrete item
∧ is a ea is a predicate that is true if y is
an extractor agent and false otherwise
∧ askis a function that generates an event for
asking the retrieval of the item d by the agent y

pea(x) = if¬serves(x, y) ∧ is asked(y, d) −→
∀z / is a ca(z) then ask(d,z)
where x is a extractor agent belonging to any storage group
Gz/y is a distributor agent belonging to the same group
∧ d is a concrete item
∧ is a ca is a predicate that is true if z is a cache agent
and false otherwise
∧ askis a function that generates an event for asking
the retrieval of the item d by the agent z

pca(x) = if¬provides(x, y) ∧ is asked(y, d) −→
obtain(d)

where x is a cache agent belonging to any storage group
Gz/y is a extractor agent belonging to the same group
∧ obtain is a function used for obtaining the data item
from the disk and store it in the cache structure

pha(x) = if¬provides hints(x, y)

∧ is asked(y, h) −→ obtain(h)

where x is a hint agent belonging to any storage
groupGz/y is a cache agent belonging to the same group
∧ obtain is a function used for obtaining metadata
and providing it to agent y

9



User or
user program

EA

CA

DA

HA

DA: Distributor Agents
EA: Extractor Agents
CA: Cache Agents
HA: Hints Agents

(1) User event

(2) Extraction event

(3) Cache event

(4) Hints event

Metadata Data

Fig. 2. Events tree in MAPFS-Grid

The functionobtaincorresponds to a read/write operation of the parallel file
system.

There are two kinds of events: (i) events originated by the user or by the user
applications and (ii) events originated by agents. The first kind of event is the
original source of event, because only when a user or a user application make a
I/O request, theevents treeis initiated. Such tree is depicted in Figure 2.

• Every agent must have planned a set ofevents, which must be managed As can
be seen in Figure 2, the order in which events are generated is the following one:
(i) firstly, an user or user program makes an I/O request. This one generates an
user event, which is caught by one distributor agent; (ii) this one generates an
extraction event, directed towards an extractor agent, which is responsible for
obtaining/storing data; (iii) usually, the extractor agent looks up the data item in
the cache,delegatingto a cache agent for this task; the cache agent must both
return data to the extractor agent and store them in the cache structure; (iv) if the
system uses some optimization technique, it is necessary to use hints agents. In
this case, hints agents are responsible for obtaining metadata from disks.

• According to the planning, the agent must run the plan. The planning model is
event-driven. If an event is generated and the premises are true, the correspond
actions are executed, modifying the system state.

• The cooperationis achieved usingshared plans, that is, making the planning

10



in a shared way. In this case, the cooperation is achieved through two different
schemas: (i) there are replicas of all the agents; these agents must coordinate
their efforts with the aim of satisfying the system goals; e.g. the cache structure
must be divided into sections and each cache agent must manage one section;
the distributor agent is responsible for distributing the work. This planning is
denominatedintra-planning. (ii) Every storage group must interoperate with the
rest of the storage groups in order to plan the system. This planning is named
inter-planning.

According to the MAPFS-Grid cooperation model, a set of performatives has been
defined. In order to define MAPFS-Grid performatives, several sets of elements are
defined for a concrete storage group:

DA: Set of distributor agents
EA: Set of extractor agents
CA: Set of cache agents
HA: Set of hints agents

Next, these performatives are described.

When an elementd is requested, a distributor agent is responsible of asking data to
several extractor agents. Letx be a distributor agent of a storage groupGx. Figure
3(a) includes the KQML performative of the distributor agent.

If the extractor agent has the elementd, then such agent does the performative of
Figure 3(b), indicating that the data itemd is available in the storage groupGx.

On the other hand, if the extractor agent has not the elementd, that is, the element
is not in the cache structure, the extractor agent does the performative of Figure 4,
asking required data to all the cache agents.

The predicateask(d,z) in the cache agentz involves the execution of the MAPFS
functionobtain(d) (read operation).

Next, the cache agent sends information about the finish of the operation to the
distributor agent, through the extractor agent, indicating that the elementd is avail-
able in the storage groupGx. This process is made by means of the performative of
Figure 5.

Thus, the cycle is closed. Nevertheless, the cache structure has a maximum number
of entries, which must be replaced by other elements with a concrete replace policy.
When the entry is invalidated, the cache agentz sends the performative represented
in Figure 6.

Cache agents use metadata provided by hints agents, sending the performative of
Figure 7(a). In this way, metainformation identified byh is required.

11



Step 1

x ∈ DA

y ∈ EA

(ask-if

:sender x

:receiver y

:reply-with id da

:language Prolog

:ontology MAPFS-Grid

:content “exists(d, Gx) ”)

(a) Performative for the data request
from a distributor agent to an extrac-
tor agent.

Step 2.1

(tell

:sender y

:receiver x

:in-reply-to id da

:reply-with id ea

:language Prolog

:ontology MAPFS-Grid

:content “exists(d, Gx) ”)

(b) Response performative from an ex-
tractor agent to a distributor agent, if
the agent has the required data.

Fig. 3. Performatives related to a distributor agent

A hint agent build the required metainformation, sending it to the cache agent by
means of the performative of Figure 7(b).

12



Step 2.2

z ∈ CA

(achieve

:sender y

:receiver z

:in-reply-to id da

:reply-with id ea

:language Prolog

:ontology MAPFS-Grid

:content “ask(d,z) ”)

Fig. 4. Performative for the data request from an extractor agent to a cache agent

Step 3.1

(forward

:from z

:to x

:sender z

:receiver y

:reply-with id ca

:language KQML

:ontology kqml-ontology

:content (achieve

:sender z

:receiver x

:in-reply-to id ea

:reply-with id ca

:language Prolog

:ontology MAPFS-Grid

:content “exists(d, Gx) ”)

Fig. 5. Response performative from a cache agent to a distributor agent, once data are
obtained

13



Invalidation

(forward

:from z

:to x

:sender z

:receiver y

:reply-with id ca’

:language KQML

:ontology kqml-ontology

:content (unachieve

:sender z

:receiver x

:in-reply-to id ea

:reply-with id ca’

:language Prolog

:ontology MAPFS-Grid

:content “exists(d, Gx) ”)

Fig. 6. Performative of invalidation of data in the cache

5 Implementation and evaluation

Agents are useful in the design of a complex system, and, concretely in the design
of a parallel file system, as we have shown in previous sections. Nevertheless, it
is necessary to validate this paradigm within this field, evaluating the increase of
the performance of the implementation of MAPFS and its multiagent subsystem.
MAPFS-Grid provides a grid-like interface to this parallel file system, allowing ap-
plications to take advantage of two levels of parallelism. MAPFS-Grid has been
implemented by using Globus Toolkit 4 [10], which is based on the WSRF specifi-
cation [22].

The enhancement provided by agents is given at the second level of parallelism,
that is, the parallelism provided by MAPFS. Thus, it is important to evaluate how
agents are implemented and affect to this parallel file system.

The implementation of the MAPFS multiagent subsystem is based on MPI technol-
ogy, mainly for the following reasons:

14



Step 3.2

u ∈ HA

(achieve

:sender z

:receiver u

:reply-with id ca”

:language Prolog

:ontology MAPFS-Grid

:content “ask(h,v) ”)

(a) Performative for the hint re-
quest from an cache agent to a
hint agent.

Step 4.1

(tell

:sender u

:receiver z

:in-reply-to id ca”

:reply-with id ha

:language Prolog

:ontology MAPFS-Grid

:content “exists(h, Gx) ”)

(b) Response performative from a hint
agent to a cache agent, once hints are
obtained.

Fig. 7. Performatives related to a hint agent

Step 3.1
Cache agent

forward

Step 2.2

achieve

Step 3.2

achieve
Cache agent

Step 4.1
Hint agent

tell

Extractor agent
tell

Extractor agent

Invalidation

Step 3.1

Step 2.1

Step 1
Distributor agent

ask-if

Fig. 8. Control flow of system performatives

(1) MPI is an standard message-passing interface, which allows system agents to
communicate among them by means of messages.

(2) Message-passing paradigm is useful for synchronizing processes.

15



(3) MPI is widely used in clusters of workstations.
(4) It provides a suitable framework for parallel applications and a dynamic man-

agement of processes.
(5) Finally, MPI provides operations for modifying the communication topolo-

gies.

These features of MPI are used for providing the following properties of agents:

• Autonomy:MPI is able to create dynamically independent and autonomous pro-
cesses with communication capacities.

• Reactivity:Agents react to the environment or changes in other processes by
means of a MPI message. In fact, KQML performatives are translated to MPI
messages by MAPFS, as it is described below.

• Proactivity: The study of the behaviour of the system by agents provides the
capability of taking decisions in advance.

KQML defines an abstraction for transport for agent communication. KQML can be
implemented with different solutions. MPI is a good choice, since this technology
fulfill the requirements of KQML performatives. For instance, the translation of
the ask-one performative into a MPI message corresponds to theMPI Send
primitive. In the same way, all the MAPFS-Grid performatives can be translated.

It is important to emphasize that MPI only solves the communication problem. The
semantic is provided by the messages content, by means of MPI structures and the
processing of such message by the receiver agent.

A MAPFS multiagent subsystem responsible for prefetching data has been imple-
mented and evaluated. This evaluation has demonstrated that the use of a multia-
gent subsystem provides a average speedup close to 4, as is shown in Figure 9. The
speedup depends on the access block size.

 0

 5

 10

1K 2K 4K 8K

S
pe

ed
up

Access size

Speedup

Fig. 9. Evaluation of the use of agents in MAPFS-Grid

16



6 Conclusions and Future Work

The agent paradigm has been traditionally linked to the Artificial Intelligence field.
Additionally, agents have been successfully used in several domains.

The novelty of our proposal is the use of a multiagent subsystem in a parallel file
system, which is used by a grid framework for providing access to data resources,
that is, MAPFS-Grid. As we have evaluated in this paper, the I/O architecture takes
advantage of the agent theory. This paper also describes the agent coordination and
communication features of MAPFS-Grid, an I/O architecture for grids.

It is important to distinguish between the conceptual model of MAPFS-Grid and
its implementation. The model is based on the agent theory, but the implementation
is solved by means of technologies closer to the system programming, as MPI and
Globus.

MAPFS-Grid provides two levels of parallelism. In this work, the agents are de-
ployed in the second level of parallelism, that is, at file system level. Currently, we
are working on adding agents to the first level of parallelism, in order to improve
the performance of the global architecture.

References

[1] ARPA knowledge sharing initiative. specification of the KQML agent-communication
language.External Interfaces Working Grop working paper, 1993.

[2] E. M. Atkins, E. H. Durfee, and K. G. Shin. Autonomous flight with CIRCA-II. In
Autonomous Agents’99 Workshop on Autonomy Control Software, May 1999.

[3] C. P. Azevedo, B. Feiju, and M. Costa. Control centres evolve with agent technology.
IEEE Computer Applications in Power, 13(3):48–53, 2000.

[4] Lubomir Bic, Munehiro Fukuda, and Michael B. Dillencourt. Distributed
programming using autonomous agents.IEEE Computer, 29(8):55–61, 1996.

[5] D.G. Cameron, R. Carvajal-Schiaffino, C. Nicholson, K. Stockinger, F. Zini, A.P.
Millar, and L. Serafini. Analysis of an agent-based grid optimisation strategy.Software
Agents and Grid Computing, 2004.

[6] H. Chalupsky, T. Finin, R. Fritzson, D. McKay, S. Shapiro, and G. Wiederhold. An
overview of KQML: A knowledge query and manipulation language. Technical report,
Computer Science Department. Stanford University, April 1992.

[7] D. Cockburn and J. Nick.ARCHON: A distributed artificial intelligence system for
industrial applications, pages 319–344. 1996. Article belonging to [23].

17



[8] Tim Finin, Yannis Labrou, and James Mayfield. KQML as an agent communication
language.”Software Agents”, MIT Press. Cambridge, 1997.

[9] Ian Foster, Nicholas R. Jennings, and Carl Kesselman. Brain meets brawn - why grid
and agents need each other. InProc. 3rd Int. Conf. on Autonomous Agents and Multi-
Agent Systems, New York, USA, 2004.

[10] Ian Foster and Carl Kesselman. Globus: A metacomputing infrastructure toolkit.
The International Journal of Supercomputer Applications and High Performance
Computing, 11(2):115–128, Summer 1997.

[11] M. Garijo, A. Cáncer, and J. J. Sánchez. A multiagent system for cooperative network-
fault management. InProceedings of the First International Conference on the
Practical Applications of Intelligent Agents and Multi-Agent Technology, PAAM-96,
pages 279–294, April 1996.

[12] E. Gendelman, L. Bic, and M. Dillencourt. Ldfs: A fault-tolerant local disk-based file
system for mobile agents.

[13] Eugene Gendelman, Lubomir F. Bic, and Michael B. Dillencourt. Fast file access for
fast agents.Proceedings of the 5th International Conference, MA 2001., 2240:88–102,
2001.

[14] Olivier Gutknecht and Jacques Ferber. The MADK IT agent platform architecture.
Infrastructure for Agents, Multi-Agent Systems, and Scalable Multi-Agent Systems,
pages 48–55, March 2001.

[15] H. Haugeneder and D. Steiner. Cooperating agents: Concepts and applications. In
Proceedings of the Agent Software Seminar. London, England. Unicom Seminars Ltd,
pages 80–106, 1995.

[16] Staffan Ḧagg. Agent technology in industrial applications. InProceedings of the
Australia-Pacific Forum on Intelligent Processing and Manufacturing of Materials
(IPMM’97), 1997.

[17] N. R. Jennings. Using GRATE to build cooperating agents for industrial control.
In Proceedings of the IFAC/IFIP/IMACS International Symposium on Artificial
Intelligence in Real Time Control, pages 691–696, 1992.

[18] N. R. Jennings, J. M. Corera, L. Laresgoiti, E. H. Mamdani, F. Perriollat, P. Skarek, and
L. Z. Varga. Using ARCHON to develop real-world DAI applications for electricity
transportation management and particle accelerator control.IEEE Expert, 1995.

[19] N. R. Jennings, P. Faratin, T. J. Norman, P. O’Brien, M. E. Wiegand, C. Voudouris,
J. L. Alty, T. Miah, and E. H. Mamdani. ADEPT: Managing business processes
using intelligent agents. InProceedings of the BCS Expert Systems 96 Conference,
Cambridge, UK, pages 5–23, 1996.

[20] N. R. Jennings, K. Sycara, and M. Wooldridge. A roadmap of agent research and
development.Autonomous Agents and Multi-Agent Systems Journal, 1(1):7–38, 1998.

[21] Yannis Labrou and Tim Finin. A Proposal for a new KQML Specification. Technical
Report TR CS-97-03, Baltimore, MD 21250, 1997.

18



[22] OASIS. Ws-ResourceFramework. 2005.

[23] G. M. O’Hare and N. R. Jennings, editors.Foundations of Distributed Artificial
Intelligence. John Wiley and Sons, 1996.

[24] Stavros Papastavrou, George Samaras, and Evaggelia Pitoura. Mobile agents for world
wide web distributed database access.Knowledge and Data Engineering, 12(5):802–
820, 2000.

[25] Maŕıa S. Ṕerez, Jeśus Carretero, F́elix Garćıa, Jośe M. Pẽna, and V́ıctor Robles.
MAPFS: A flexible multiagent parallel file system for clusters.Future Generation
Comp. Syst., 22(5), 2006.

[26] Maŕıa S. Ṕerez, Jeśus Carretero, F́elix Garćıa, Jośe M. Pẽna Śanchez, and Victor
Robles. MAPFS-Grid: A flexible architecture for data-intensive grid applications.
In F. Ferńandez Rivera, Marian Bubak, A. Gómez Tato, and Ramon Doallo, editors,
European Across Grids Conference, volume 2970 ofLecture Notes in Computer
Science, pages 111–118. Springer, 2003.

[27] Maŕıa S. Ṕerez, Alberto Śanchez, Jośe Manuel Pẽna, and V́ıctor Robles. A new
formalism for dynamic reconfiguration of data servers in a cluster.J. Parallel Distrib.
Comput., 65(10):1134–1145, 2005.

[28] Maŕıa S. Ṕerez, Alberto Śanchez, V́ıctor Robles, Jośe M. Pe na, and Francisco Rosales.
Grid Storage Groups: A bridge between data-based clusters and data grid architectures.
Journal of Parallel and Distributed Computing Practices. Special Issue on Grid
Computing Infrastructures and Applications, 2006.

[29] K. Segun, A. Hurson, V. Desai, A. Spink, and L. Miller. Transaction management in a
mobile data access system.Annual Review of Scalable Computing, 3:85–147, 2001.

[30] Aamir Shafi, Umer Farooq, Saad Kiani, Maria Riaz, Anjum Shehzad, Arshad Ali,
Iosif Legrand, and Harvey Newman. DIAMOnDS - DIstributed Agents for MObile
and Dynamic Services. InProceedings of the 2003 Conference for Computing in High
Energy and Nuclear Physics (CHEP03), La Jolla (California), March 24-28 2003.

19


